Constrained Maximum Likelihood Cryo-EM Reconstruction in Proteomics
蛋白质组学中的约束最大似然冷冻电镜重建
基本信息
- 批准号:7174569
- 负责人:
- 金额:$ 8.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2009-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsBackBiologicalCollaborationsCryoelectron MicroscopyDataDevelopmentEducational process of instructingElectron MicroscopyEngineeringEnsureGoalsITPR1 geneImageInositolIon ChannelIon Channel ProteinLaboratoriesMathematicsMeasuresMedical ImagingModificationMolecular StructureNoisePerformancePilot ProjectsPropertyProteinsProteomicsPublishingRelative (related person)ResearchResolutionRotationStructureTechniquesTestingTranslationsUniversitiesWorkbasecryogenicsexpectationimage processingimprovedinterestmacromoleculemathematical theorynovelparticleprotein structurereceptorreconstructionresearch studysimulationtheoriesthree dimensional structuretooltripolyphosphatetwo-dimensional
项目摘要
DESCRIPTION (provided by applicant):
Cryogenic Electron Microscopy (CEM) is a tool for obtaining three dimensional structure of proteins and
other biological macromolecules. CEM produces noisy two dimensional images of the structure at random orientations, and the image processing challenge is to produce estimates of projections in known directions by aligning and averaging the images. These estimates (or averages) are constrained because they have to satisfy the so-called common line constraints.
This application proposes a constrained maximum-likelihood algorithm that is guaranteed to produce
aligned averages that satisfy the common line constraints. The algorithm uses a modified Expectation-
Maximization (EM) technique to maximize the likelihood. The modification consists of ensuring that the
common lines constraints are satisfied within each EM iteration. The constraints are shown to be linear and are enforced using the von Neuman alternating projections theorem. The algorithm is provably convergent, monotonically improves the likelihood, and is optimal. The mathematical theory and preliminary simulations are presented in the application.
The goal of the application is to conduct a through pilot study of the efficacy of the algorithm. The accuracy and resolution of reconstruction will be studied by Monte Carlo simulations with synthetic and real 3-D protein and other macromolecular structures. The accuracy will be measured by the average mean squared error in reconstruction, and resolution will be measured by Fourier shell correlation. Further, the performance of the algorithm will be measured by reconstructing the IP3 Ca ion channel protein. The structure of this protein has been analyzed previously, so a comparison with published structure should provide a good indication of relative accuracy.
The ultimate relevance of this research is that it would provide a principled algorithm with guaranteed
properties for reconstructing the 3-D structure of proteins.
描述(由申请人提供):
低温电子显微镜(CEM)是一种用于获得蛋白质三维结构的工具,
其他生物大分子。CEM在随机方向上产生结构的噪声二维图像,并且图像处理的挑战是通过对齐和平均图像来产生已知方向上的投影的估计。这些估计值(或平均值)是受约束的,因为它们必须满足所谓的公共线约束。
本申请提出了一种约束最大似然算法,保证产生
满足公共线约束的对齐的平均值。该算法使用修改后的期望-
最大化(EM)技术,以最大化可能性。修改包括确保
在每个EM迭代内满足公共线约束。的约束被证明是线性的,并强制执行使用冯诺依曼交替投影定理。该算法是可证明收敛的,单调提高的可能性,是最佳的。在应用中给出了数学理论和初步模拟。
该应用程序的目标是对算法的有效性进行全面的试点研究。重建的精度和分辨率将通过Monte Carlo模拟与合成和真实的3-D蛋白质和其他大分子结构进行研究。精度将通过重建中的平均均方误差来衡量,分辨率将通过傅立叶壳相关来衡量。此外,将通过重建IP 3 Ca离子通道蛋白来测量算法的性能。这种蛋白质的结构以前已经分析过了,所以与已发表的结构进行比较应该可以很好地表明相对准确度。
这项研究的最终意义在于,它将提供一个有保证的原则性算法,
重建蛋白质三维结构的特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hemant D Tagare其他文献
Hemant D Tagare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hemant D Tagare', 18)}}的其他基金
DaTscan-based Disease Progression Models for Early-stage Parkinson’s Disease
基于 DaTscan 的早期帕金森病疾病进展模型
- 批准号:
9902564 - 财政年份:2018
- 资助金额:
$ 8.25万 - 项目类别:
Comprehensive Local Resolution Analysis for Cryo-EM
冷冻电镜的综合局部分辨率分析
- 批准号:
9545804 - 财政年份:2016
- 资助金额:
$ 8.25万 - 项目类别:
Cryo-EM 3D Reconstruction of Flexible Particles
柔性颗粒的冷冻电镜 3D 重建
- 批准号:
8499371 - 财政年份:2011
- 资助金额:
$ 8.25万 - 项目类别:
Cryo-EM 3D Reconstruction of Flexible Particles
柔性颗粒的冷冻电镜 3D 重建
- 批准号:
8693631 - 财政年份:2011
- 资助金额:
$ 8.25万 - 项目类别:
Cryo-EM 3D Reconstruction of Flexible Particles
柔性颗粒的冷冻电镜 3D 重建
- 批准号:
8289461 - 财政年份:2011
- 资助金额:
$ 8.25万 - 项目类别:
Cryo-EM 3D Reconstruction of Flexible Particles
柔性颗粒的冷冻电镜 3D 重建
- 批准号:
8182649 - 财政年份:2011
- 资助金额:
$ 8.25万 - 项目类别:
Fast 3D Reconstruction Algorithms for Cryo-EM
用于冷冻电镜的快速 3D 重建算法
- 批准号:
8318254 - 财政年份:2010
- 资助金额:
$ 8.25万 - 项目类别:
Fast 3D Reconstruction Algorithms for Cryo-EM
用于冷冻电镜的快速 3D 重建算法
- 批准号:
8112000 - 财政年份:2010
- 资助金额:
$ 8.25万 - 项目类别:
Fast 3D Reconstruction Algorithms for Cryo-EM
用于冷冻电镜的快速 3D 重建算法
- 批准号:
7881121 - 财政年份:2010
- 资助金额:
$ 8.25万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 8.25万 - 项目类别:
Continuing Grant