Nonlinear Models of mRNA Expression in Cancer by RT-PCR
RT-PCR 癌症中 mRNA 表达的非线性模型
基本信息
- 批准号:7500416
- 负责人:
- 金额:$ 26.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-16 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBiological AssayBiological MarkersBloodCancer PatientCause of DeathCharacteristicsClinicalClinical DataClinical TrialsCodeColorectal CancerDataDependenceDetectionDiseaseDisease regressionEnrollmentExcisionExhibitsFundingFutureGoalsGuanylate CyclaseHeterogeneityHistopathologyIndividualInstitutionInvestigationKineticsLaboratoriesMalignant NeoplasmsMeasurementMeasuresMessenger RNAMethodologyMethodsModelingMolecularNon-linear ModelsPatientsPhasePolymerase Chain ReactionPositive Lymph NodeProceduresPropertyRangeReactionRecurrenceRecurrent diseaseReverse Transcriptase Polymerase Chain ReactionRunningSamplingSensitivity and SpecificityStandards of Weights and MeasuresStructureTechniquesTechnologyTestingTimeTissuesUnited StatesWeightbasecancer recurrencedesignimprovedmRNA Expressionmortalityprognosticprospectivequality assuranceresearch studysimulation
项目摘要
DESCRIPTION (provided by applicant): The overall goal of this project is to improve the data analytic procedures associated with quantitative real-time polymerase chain reaction (Q-RT-PCR), with particular focus on measuring mRNA expression of molecular biomarkers and their association with colorectal cancer. Colorectal cancer is the third most common malignancy in the United States, and the third most common cause of death among cancer-related mortalities. While resection therapy is the main course of treatment for these patients, over 50% of patients presumed cured will recur within three to five years. It is hypothesized that these recurrences are actually undetected micrometastases. We propose to adapt Q-RT-PCR technology by changing the methods to quantify the amount of mRNA expression based on nonlinear models of the kinetic reaction obtained from Q-RT-PCR experiments. The current approach to quantitation does not make use of most of the data from the kinetic RT-PCR reaction, and the assumptions of the current model do not match the reality of the experiments. Thus, we also propose extensions of the error structure of these models to account for serial dilution of samples, heterogeneity across concentrations, and dependence of replicate samples. It is our hypothesis that improved measurement of the quantity of molecular biomarkers will offer more accurate prognostic information for colorectal cancer patients. Data from two NCI funded multi-center trials of guanylyl-cyclase-C (GCC) are available for these studies to demonstrate the clinical utility of our proposed methods.
描述(由申请人提供):本项目的总体目标是改进与定量实时聚合酶链反应(Q-RT-PCR)相关的数据分析程序,特别关注测量分子生物标志物的mRNA表达及其与结直肠癌的相关性。结直肠癌是美国第三常见的恶性肿瘤,也是癌症相关死亡中第三常见的死亡原因。虽然切除治疗是这些患者的主要治疗过程,但超过50%的假定治愈的患者将在三到五年内复发。据推测,这些复发实际上是未检测到的微转移。 我们建议根据Q-RT-PCR实验获得的动力学反应的非线性模型,通过改变量化mRNA表达量的方法来适应Q-RT-PCR技术。目前的定量方法没有利用来自动力学RT-PCR反应的大部分数据,并且当前模型的假设与实验的实际情况不匹配。因此,我们还提出了这些模型的误差结构的扩展,以考虑样品的连续稀释,浓度间的异质性和重复样品的依赖性。我们的假设是,改进的分子生物标志物的数量测量将为结直肠癌患者提供更准确的预后信息。来自NCI资助的鸟苷酸环化酶C(GCC)的两个多中心试验的数据可用于这些研究,以证明我们提出的方法的临床实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terry HYSLOP其他文献
Terry HYSLOP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Terry HYSLOP', 18)}}的其他基金
Nonlinear Models of mRNA Expression in Cancer by RT-PCR
RT-PCR 癌症中 mRNA 表达的非线性模型
- 批准号:
6861355 - 财政年份:2005
- 资助金额:
$ 26.42万 - 项目类别:
Nonlinear Models of mRNA Expression in Cancer by RT-PCR
RT-PCR 癌症中 mRNA 表达的非线性模型
- 批准号:
7501353 - 财政年份:2005
- 资助金额:
$ 26.42万 - 项目类别:
Nonlinear Models of mRNA Expression in Cancer by RT-PCR
RT-PCR 癌症中 mRNA 表达的非线性模型
- 批准号:
7673687 - 财政年份:2005
- 资助金额:
$ 26.42万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26.42万 - 项目类别:
Research Grant