Selective neuronal silencing to study cognitive decline in Alzheimer's disease
选择性神经元沉默研究阿尔茨海默病的认知能力下降
基本信息
- 批准号:7429627
- 负责人:
- 金额:$ 22.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-30 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Splice SiteActinsAction PotentialsAcuteAddressAdoptedAdultAdverse effectsAffectAgeAgonistAlzheimer&aposs DiseaseAmygdaloid structureAmyloidAmyloid beta-Protein PrecursorAmyloid depositionAmyloidosisAnimal BehaviorAnimal ModelAnimalsAntimitotic AgentsAnxietyAppearanceAreaAstrocytesAtlasesAxonBacterial Artificial ChromosomesBehaviorBehavioralBindingBiochemicalBiological AssayBirthBrainBreedingBromodeoxyuridineCaenorhabditis elegansCell DeathCell LineCell NucleusCell divisionCellsCephalicCessation of lifeCharacteristicsChemicalsCherry - dietaryChloride ChannelsCholinergic AgentsChromosome PairingChromosome abnormalityClassClinicalCodeCognitiveCollaborationsCommunitiesComplementary DNAComputer information processingConditionCorpus striatum structureCultured CellsCytoplasmCytoplasmic GranulesCytostaticsDNA Sequence RearrangementDataDatabasesDaughterDementiaDepositionDepthDevelopmentDiagnosisDisadvantagedDiscriminationDiseaseDistantDoseDrug usageEarly InterventionEctopic ExpressionEducational process of instructingElectrophysiology (science)ElementsEmbryoEmbryonic DevelopmentEmotionalEmotionsEngineeringEnhancersEnsureEquilibriumEstrogen AnaloguesEstrogen ReceptorsEstrogensExcisionFOS geneFacility Construction Funding CategoryFailureFamily PicornaviridaeFiberFire - disastersFrightFunctional disorderFutureG-Protein-Coupled ReceptorsGanciclovirGene ExpressionGenesGeneticGenetic RecombinationGenetic TranscriptionGenomic SegmentGenomicsGlutamatesGoalsHarvestHeartHippocampus (Brain)HourHumanImageImmune responseImmunohistochemistryImpaired cognitionImpairmentIn VitroIndiumIndividualInflammationInflammatory ResponseInheritedInjection of therapeutic agentInjuryIntermediate FilamentsInternal Ribosome Entry SiteInterneuronsInterventionIntronsInvestmentsIon ChannelIvermectinKnowledgeLabelLaboratoriesLacZ GenesLateralLearningLeftLesionLifeLigandsLightLinkLocalizedLocationLong-Term PotentiationMammalian CellMediatingMembrane PotentialsMemoryMemory impairmentMessenger RNAMethodsMicrotubule-Associated ProteinsMindMinorMitoticModelingMorphologyMusMuscimolMutant Strains MiceMyocardial InfarctionNamesNatureNeomycinNeuroanatomyNeurobehavioral ManifestationsNeurobiologyNeuroblastomaNeurodegenerative DisordersNeurologicNeurologistNeuronal DysfunctionNeuronsNeurosciencesNewborn InfantNucleic Acid Regulatory SequencesNumbersOlder PopulationOpen Reading FramesOperative Surgical ProceduresOutcomeOutputParkinson DiseasePartner in relationshipPathogenesisPathologyPathway interactionsPatientsPatternPeptidesPerforant PathwayPerformancePeripheralPersonal CommunicationPersonal SatisfactionPharmaceutical PreparationsPharmacologic SubstancePharmacological TreatmentPhasePlacementPlaguePliabilityPopulationPopulation StudyPositioning AttributePostdoctoral FellowPreparationPreventionProcessProductionPropertyProtein EngineeringProtein OverexpressionProtein SProteinsPublicationsPublishingQualifyingRNA SplicingRangeRattusReceptor GeneRecoveryRegulatory ElementReporterReportingReproducibilityResearchResidual stateResolutionResourcesRewardsRodentRoleRouteScienceSeizuresSenile PlaquesSiblingsSignal TransductionSiteSleepSliceSolutionsSouthern BlottingSpecific qualifier valueSpecificityStagingStandards of Weights and MeasuresStructureStudentsStudy modelsSymptomsSynapsesSystemTamoxifenTarget PopulationsTechniquesTechnologyTestingTetanus Helper PeptideTetanus ToxinTetracyclineTetracyclinesTherapeuticTherapeutic InterventionThinkingThymidine KinaseTimeToxinTrainingTranscriptTranscriptional ActivationTransfectionTransgenesTransgenic AnimalsTransgenic MiceTransgenic ModelTransgenic OrganismsTreatment ProtocolsUpper armVariantVeinsVertebral columnVesicleViralViral VectorWeekWoodchuck Hepatitis B VirusWorkZebrafishamyloid pathologybasal forebrainbasebehavior testblastocystblastomere structurebody systemcholinergiccholinergic neuronclinically relevantcognitive functionconditioned feardaughter celldaydentate gyrusdesigndesiredisease characteristicdrug-sensitiveembryonic stem cellentorhinal cortexexperiencefeedingfunctional restorationglutamate-gated chloride channelgranule cellhealthy aginghippocampal pyramidal neuronhomologous recombinationhuman diseaseimprovedin vivoinnovationinsightinterestinward rectifier potassium channelirradiationkillingslateral ventricleligand gated channellink proteinmature animalmemory retentionmigrationmorris water mazemossy fibermouse modelnerve stem cellnestin proteinneuroblastneurogenesisneuropathologyneurotransmitter releasenewsnext generationnovelpeptide Apreventprogenitorpromoterprotein expressionreceptorreceptor expressionrecombinaserelating to nervous systemresearch studyresponserestorationselective expressionskillsstem cellsstoichiometrysuccesstooltransgene expressionvector
项目摘要
Our understanding of neurodegenerative diseases is currently hindered by lack of a firm
neurobiological link between the patient's symptoms and the underlying neuropathology. To
advance, we must identify not only key biochemical changes, but also how these changes alter
the function of specific circuits to cause neurological symptoms. I seek to understand how
impairment of particular circuits initiates early symptoms of Alzheimer's disease (AD), and how
addition of further dysfunction leads to the disease's ultimate decline. I will apply a new method
of selective neuronal silencing in transgenic mice to examine the behavioral impact of
inactivating neuronal circuits damaged in AD. My postdoctoral laboratory has developed a
novel chloride channel that responds specifically to ivermectin by producing hyperpolarization
that results in selective, reversible suppression of neuronal activity. I will use my expertise in
transgenic technology to create a mouse in which the ivermectin channel is conditionally
expressed under control of Cre recombinase. Mating this mouse to animals expressing Cre in
selected neuronal populations will allow those cells to be silenced with systemic ivermectin. My
goal is to explore the function of adult-born hippocampal neurons, as this population is severely
diminished in mouse models for AD. I will examine the role of these cells in learning and
memory by selectively silencing them at critical times in the acquisition, consolidation, and recall
of new information. Additional studies will address the effect of silencing on the migration,
morphology, and survival of these adult-born cells. My long-term plans are to examine the
behavioral impact of silencing other circuits damaged later in the course of disease to
understand how diminished activity in multiple domains results in the progressive cognitive
decline of AD. In the process, I will generate a transgenic mouse for selective neuronal
silencing that will be broadly useful to the neuroscience community.
我们对神经退行性疾病的了解目前由于缺乏确凿的证据而受到阻碍
患者症状和潜在神经病理之间的神经生物学联系。至
为了取得进展,我们不仅必须确定关键的生化变化,而且必须确定这些变化是如何改变的
引起神经症状的特定回路的功能。我试图理解为什么
阿尔茨海默病(AD)的早期症状是由特定回路的损伤引起的,以及
进一步的功能障碍会导致这种疾病的最终衰落。我要用一种新方法
在转基因小鼠中选择性神经元沉默的研究
阿尔茨海默病中受损的神经元回路失活。我的博士后实验室已经开发出一种
通过产生超极化对伊维菌素产生特异性反应的新型氯离子通道
这会导致选择性的、可逆的神经元活动抑制。我将利用我的专业知识
转基因技术创造了一种伊维菌素通道有条件地
在Cre重组酶控制下表达。将这只小鼠与表达Cre的动物交配
选定的神经元群体将允许这些细胞用全身伊维菌素沉默。我的
目标是探索成年出生的海马神经元的功能,因为这一群体严重
在AD的小鼠模型中减少。我将研究这些细胞在学习和学习中的作用
通过在获取、巩固和回忆的关键时刻选择性地使他们保持沉默来记忆
新的信息。其他研究将解决沉默对迁徙的影响,
这些成体细胞的形态和存活情况。我的长期计划是研究
使病程后期受损的其他回路沉默对行为的影响
理解在多个领域中活动减少如何导致渐进性认知
AD的衰退。在这个过程中,我将产生一只用于选择性神经元的转基因小鼠
沉默,这将对神经科学界广泛有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOANNA L JANKOWSKY其他文献
JOANNA L JANKOWSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOANNA L JANKOWSKY', 18)}}的其他基金
TMEM106b as a lysosomal adaptor to influence brain aging and tau pathogenesis
TMEM106b 作为溶酶体适配器影响大脑衰老和 tau 发病机制
- 批准号:
10583546 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
TMEM106b as a lysosomal adaptor to influence brain aging and tau pathogenesis
TMEM106b 作为溶酶体适配器影响大脑衰老和 tau 发病机制
- 批准号:
10413976 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Gene therapy for Alzheimer's disease using virally delivered Aβ variants
使用病毒传递的 Aβ 变体进行阿尔茨海默氏病的基因治疗
- 批准号:
10316624 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Gene therapy for Alzheimer's disease using virally delivered Aβ variants
使用病毒传递的 Aβ 变体进行阿尔茨海默氏病的基因治疗
- 批准号:
10609343 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
TMEM106b as a lysosomal adaptor to influence brain aging and tau pathogenesis
TMEM106b 作为溶酶体适配器影响大脑衰老和 tau 发病机制
- 批准号:
10172237 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Plasticity of the entorhinal-hippocampal circuit as a vulnerability in AD
内嗅海马回路的可塑性是 AD 的一个弱点
- 批准号:
10078733 - 财政年份:2017
- 资助金额:
$ 22.2万 - 项目类别:
Plasticity of the entorhinal-hippocampal circuit as a vulnerability in AD
内嗅海马回路的可塑性是 AD 的一个弱点
- 批准号:
9438665 - 财政年份:2017
- 资助金额:
$ 22.2万 - 项目类别:
Deconstructing the pathogenic effect of APP in memory circuits
解构APP对记忆回路的致病作用
- 批准号:
8938903 - 财政年份:2015
- 资助金额:
$ 22.2万 - 项目类别:
Deconstructing the pathogenic effect of APP in memory circuits
解构APP对记忆回路的致病作用
- 批准号:
9104241 - 财政年份:2015
- 资助金额:
$ 22.2万 - 项目类别:
Selective neuronal silencing to study hippocampal neurogenesis in depression
选择性神经元沉默研究抑郁症中海马神经发生
- 批准号:
8687749 - 财政年份:2013
- 资助金额:
$ 22.2万 - 项目类别:
相似海外基金
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10797554 - 财政年份:2023
- 资助金额:
$ 22.2万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10460136 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10311645 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10532793 - 财政年份:2020
- 资助金额:
$ 22.2万 - 项目类别:
How do RNA-binding proteins control splice site selection?
RNA 结合蛋白如何控制剪接位点选择?
- 批准号:
BB/T000627/1 - 财政年份:2020
- 资助金额:
$ 22.2万 - 项目类别:
Research Grant
Mechanism of Splice Site Recognition by the U2AF/SF1 Protein Complex
U2AF/SF1 蛋白复合物的剪接位点识别机制
- 批准号:
553974-2020 - 财政年份:2020
- 资助金额:
$ 22.2万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10316181 - 财政年份:2020
- 资助金额:
$ 22.2万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10769989 - 财政年份:2019
- 资助金额:
$ 22.2万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10808389 - 财政年份:2019
- 资助金额:
$ 22.2万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10585911 - 财政年份:2019
- 资助金额:
$ 22.2万 - 项目类别: