Genetic Studies of Human Craniofacial Diseases
人类颅面疾病的遗传学研究
基本信息
- 批准号:7318847
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Human Craniofacial Genetics Section laboratory was established in April 2004 to study the genetic basis of oral and craniofacial diseases. The goal of the section is to understand the genetic basis of human dental and craniofacial diseases so that we may identify specific etiologic components of disease that permit development of better diagnostic and treatment strategies. The laboratory is aligned along three general anatomical themes bone, teeth and skin. Investigators have been recruited whose interests and areas of expertise can be applied to each theme, with specific expertise in cell culture, immunohistochemistry and imaging, molecular biology, expression profiling of oral microbes and proteomics.
The working paradigm of the section is that there is a genetic basis to human disease and that understanding the genetic basis of disease will foster development of better diagnostic and treatment strategies. Studies of genetic diseases can provide significant insight into normal as well as abnormal development. In terms of genetics, diseases can be divided into two broad types, those for which single genes are deterministic of disease, and those for which genetic factors contribute to risk, but are not individually deterministic. We are studying both simple Mendelian diseases (amelogenesis imperfecta, tricho-dento-osseous syndrome, Papillon Lefevre and hereditary gingival overgrowth), as well as complex diseases (oral facial clefting, periodontitis, Sjogrens syndrome). Gene-environment interactions are also important determinants of disease etiology. We are investigating microbial-protein interactions in the oral cavity in several diseases including dental caries, and in several conditions including pre and post bone marrow transplant and critical care patients.
Previously we determined that a DLX3 truncation mutation is responsible for tricho-dento-osseous syndrome (TDO) in humans. One feature of the condition is increased bone thickness and density. Our goal is to understand how this mutation results in these favorable osseous findings. We have generated . transgenic (TG) mice that carry the same deletion mutation responsible for TDO in humans. The mice have phenotypic features including taurodontism, enhanced bone density and thickness. These TG mice show defects in odontoblasts and cementoblasts resulting in reduced dentin formation. Bone density and thickness are markedly enhanced in TG mice. Further analysis will provide the mechanisms and roles of MT-DLX3 in the tooth and bone development, that leads to clinical findings observed in humans.
Human linkage and association studies support a gene(s) for nonsyndromic cleft lip with or without cleft palate (CL/P) on chromosome 4q31-q32 at or near the PDGFC gene locus. PDGF-C is necessary for palate formation in mice, and pdgfc-/- is associated with a complete cleft of the secondary palate. We sequenced the PDGFC gene in CL/P cases and controls and identified a regulatory region genetic polymorphism associated with CL/P. Transfection assays of PDGFC promoter reporter constructs indicate that this polymorphism is associated with a significant decrease (~ 50%) of PDGFC gene promoter activity. Therefore we have study the roles of PDGF-C on hard tissue development such as osteoblastic bone formation and osteoclastic bone resorption.
We have previously identified a mutation of the son of sevenless 1 (SOS1) gene in hereditary gingival fibromatosis (HGF). We have characterized phenotypic and morphological characteristics of gingival fibroblasts with and have begun to identify key downfield targets of the mutant SOS1 protein responsible for HGF. We have demonstrated in vivo and in vitro that fibroblasts with the SOS1 mutation have higher proliferation rates, resulting in increased cell numbers and amounts of collagen. In addition, we have studied the difference in cell cycle profiling and cell attachment on different extracellular matrices between normal control and HGF fibroblasts. We are continuing studies to elucidate the molecular mechanism of gingival overgrowth. We are also studying other cases of HGF, and have determined that other genes are responsible for this condition in different families. We are in the process of identifying these additional genes.
We have identified the genetic mutation in DSPP responsible for Dentinogenesis imperfecta in the Brandywine population from Maryland. Through work performed for 5 different forms of DI due to DSPP mutation, we have determined the mutation responsible for most of these forms of DI results from an endoplasmic reticulum storage type disease. Form previous work with genetic forms of kidney disease, we have also determined that molecular chaperones can increase release of the mutant protein from the endoplasmic reticulum. We are in the process of evaluating biocompatible chaperones that may permit treatment of dentinogenesis imperfecta.
Last year we identified several novel gene mutations in genes for amelogenesis imperfecta (AI) and we were the first to identify gene mutations in 2 other genes (KLK4, MMP20) that cause AI. We are continuing studies to identify genetic mutations responsible for AI in other families. Additionally, we continue to follow up on linkage of AI to chromosome 8q. We have sequenced ~ 40 genes but have not found mutation.
We have performed studies to evaluate changes in saliva proteins in individuals with Sjogren?s syndrome. We have characterized proteins present (quantitative and qualitative) in patients and controls to identify disease biomarkers using SELDI and 2D-DIGE combined mass spectrometry.
We have also performed protein profiling of temporomandibular joint fluid to understand the pathophysiology of TMD. Using liquid chromatography based tandem mass spectrometry we have identified a protein catalogue on the composition of temporomandibular joint fluid. A number of proteins were expressed in TMD fluids that may serve as biomarkers. We have also studied saliva composition Salivary samples were isolated for pre and post bone marrow transplant patients (n = 40) and evaluated by SELDI and 2D-DIGE combined mass spectrometry. We were able to identify several differentially expressed proteins that were altered in pre and post transplant cases. These findings have been submitted to the Journal ?Experimental Hematology? in July 2006.
Ventilator-associated pneumonia (VAP) is associated with significant morbidity, mortality, health care utilization and costs. The oral flora undergoes major shift during ICU stay and a causative pathway of VAP may be aspiration of oropharyngeal pathogens. More than 700 bacterial species have been detected in the oral cavity, but over 50% are not cultivatable, limiting identification. We are using genetic approaches to longitudinally characterize the oral flora changes in ventilated ICU patients. We are studying changes in the oral flora of intubated patients to characterize changes in the flora. Additionally, we are evaluating the effects of simple treatments to determine if they can provide a beneficial effect in intubated ICU patients.
人类颅面遗传学科实验室成立于2004年4月,致力于研究口腔颅面疾病的遗传基础。本节的目标是了解人类牙科和颅面疾病的遗传基础,以便我们可以确定疾病的特定病因,从而制定更好的诊断和治疗策略。该实验室按照骨骼、牙齿和皮肤这三个一般解剖学主题进行排列。已招募的研究人员的兴趣和专业领域可以应用于每个主题,并在细胞培养、免疫组织化学和成像、分子生物学、口腔微生物表达谱和蛋白质组学方面具有特定的专业知识。
该部分的工作范式是人类疾病有遗传基础,了解疾病的遗传基础将促进更好的诊断和治疗策略的发展。遗传疾病的研究可以为正常和异常发育提供重要的见解。在遗传学方面,疾病可分为两大类,一类是由单个基因决定的疾病,另一类是遗传因素导致风险,但不是个体决定性的。我们正在研究简单的孟德尔疾病(釉质发育不全、毛齿骨综合征、Papillon Lefevre 和遗传性牙龈过度生长),以及复杂的疾病(口腔颌面裂、牙周炎、干燥综合征)。基因-环境相互作用也是疾病病因学的重要决定因素。我们正在研究口腔中微生物与蛋白质的相互作用,涉及多种疾病,包括龋齿,以及多种情况,包括骨髓移植前后和重症监护患者。
此前我们确定 DLX3 截短突变是导致人类毛齿骨综合征 (TDO) 的原因。该病的特征之一是骨质厚度和密度增加。我们的目标是了解这种突变如何导致这些有利的骨质发现。我们已经生成了 .转基因 (TG) 小鼠携带与人类 TDO 相同的缺失突变。这些小鼠具有牛牙症、骨密度和厚度增强等表型特征。这些 TG 小鼠表现出成牙本质细胞和成牙骨质细胞的缺陷,导致牙本质形成减少。 TG 小鼠的骨密度和厚度显着增强。进一步的分析将提供 MT-DLX3 在牙齿和骨骼发育中的机制和作用,从而得出在人类中观察到的临床结果。
人类连锁和关联研究支持染色体 4q31-q32 上 PDGFC 基因位点或附近存在非综合征性唇裂伴或不伴腭裂 (CL/P) 的基因。 PDGF-C 对于小鼠上颚的形成是必需的,并且 pdgfc-/- 与次级上颚的完全裂有关。我们对 CL/P 病例和对照中的 PDGFC 基因进行了测序,并鉴定了与 CL/P 相关的调控区遗传多态性。 PDGFC 启动子报告构建体的转染测定表明,这种多态性与 PDGFC 基因启动子活性的显着降低(约 50%)相关。因此我们研究了PDGF-C对成骨细胞骨形成和破骨细胞骨吸收等硬组织发育的作用。
我们之前已经在遗传性牙龈纤维瘤病 (HGF) 中发现了七少之子 1 (SOS1) 基因的突变。我们已经表征了牙龈成纤维细胞的表型和形态学特征,并开始鉴定负责 HGF 的突变 SOS1 蛋白的关键低场靶标。我们已经在体内和体外证明,具有 SOS1 突变的成纤维细胞具有更高的增殖率,导致细胞数量和胶原蛋白数量增加。此外,我们还研究了正常对照和 HGF 成纤维细胞之间细胞周期分析和不同细胞外基质上细胞附着的差异。我们正在继续研究以阐明牙龈过度生长的分子机制。我们还在研究其他 HGF 病例,并已确定其他基因在不同家族中导致了这种情况。我们正在鉴定这些额外的基因。
我们已经在来自马里兰州的布兰迪万人群中发现了导致牙本质发育不全的 DSPP 基因突变。通过对 DSPP 突变引起的 5 种不同形式的 DI 进行研究,我们确定了导致大多数这些形式的 DI 由内质网贮积型疾病引起的突变。根据之前对肾脏疾病遗传形式的研究,我们还确定分子伴侣可以增加突变蛋白从内质网的释放。我们正在评估可能允许治疗牙本质发育不全的生物相容性伴侣。
去年,我们在釉质形成不全症 (AI) 基因中发现了几种新的基因突变,并且我们是第一个在其他 2 个导致 AI 的基因(KLK4、MMP20)中发现基因突变的人。我们正在继续研究,以确定其他家庭中导致人工智能的基因突变。此外,我们将继续追踪 AI 与 8q 染色体的连锁。我们已经对约 40 个基因进行了测序,但尚未发现突变。
我们进行了研究来评估干燥综合征患者唾液蛋白质的变化。我们对患者和对照中存在的蛋白质进行了表征(定量和定性),以使用 SELDI 和 2D-DIGE 组合质谱法识别疾病生物标志物。
我们还对颞下颌关节液进行了蛋白质分析,以了解 TMD 的病理生理学。使用基于液相色谱的串联质谱法,我们已经确定了颞下颌关节液成分的蛋白质目录。许多蛋白质在 TMD 液体中表达,可作为生物标志物。我们还研究了唾液成分,分离了骨髓移植前后患者 (n = 40) 的唾液样本,并通过 SELDI 和 2D-DIGE 联合质谱法进行评估。我们能够识别出几种在移植前后发生改变的差异表达蛋白。这些研究结果已提交给《实验血液学》杂志。 2006年7月。
呼吸机相关性肺炎 (VAP) 与显着的发病率、死亡率、医疗保健利用率和费用相关。在 ICU 住院期间,口腔菌群发生重大变化,口咽部病原体的吸入可能是 VAP 的致病途径。口腔中已检测到 700 多种细菌,但超过 50% 不可培养,限制了识别。我们正在使用遗传方法来纵向描述 ICU 通气患者口腔菌群变化的特征。我们正在研究插管患者口腔菌群的变化,以表征菌群的变化。此外,我们正在评估简单治疗的效果,以确定它们是否可以为 ICU 插管患者带来有益的效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS C HART其他文献
THOMAS C HART的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS C HART', 18)}}的其他基金
相似海外基金
Long-read technologies and pangenome approaches to improve genetic studies of human diseases and traits
长读技术和泛基因组方法可改善人类疾病和性状的遗传学研究
- 批准号:
489039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Genetic and Functional Studies of Human Ciliary Syndromes
人类睫状体综合征的遗传和功能研究
- 批准号:
10188509 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Genetic and Functional Studies of Human Ciliary Syndromes
人类睫状体综合征的遗传和功能研究
- 批准号:
10436165 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Genetic and Functional Studies of Human Ciliary Syndromes
人类睫状体综合征的遗传和功能研究
- 批准号:
10017953 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Human population based genetic studies to elucidate the biology of NAFLD
基于人群的遗传学研究阐明 NAFLD 的生物学
- 批准号:
9009526 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Human population based genetic studies to elucidate the biology of NAFLD
基于人群的遗传学研究阐明 NAFLD 的生物学
- 批准号:
9549051 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Statistical methods for genetic studies of complex human traits
复杂人类特征遗传研究的统计方法
- 批准号:
498321-2016 - 财政年份:2016
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Human population based genetic studies to elucidate the biology of NAFLD
基于人群的遗传学研究阐明 NAFLD 的生物学
- 批准号:
10020952 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Human population based genetic studies to elucidate the biology of NAFLD
基于人群的遗传学研究阐明 NAFLD 的生物学
- 批准号:
9348637 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Genome-wide association studies to map genetic variation underlying mosquito susceptibility to human malaria
全基因组关联研究绘制蚊子对人类疟疾易感性的遗传变异
- 批准号:
G1100339/2 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Fellowship














{{item.name}}会员




