Minority Predoctoral Fellowship Program
少数族裔博士前奖学金计划
基本信息
- 批准号:7183537
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAmputeesBehaviorComplexDataDevelopmentDevicesEnvironmentFacility Construction Funding CategoryFellowship ProgramFreedomHandHand functionsIllinoisIndividualInstitutesIntramuscularLiteratureMinorMinorityMotionMotorMovementMuscleMyoelectric prosthesisNumbersPatternPeripheral Nervous SystemPostureProsthesisPsyche structurePurposeRadialRangeReportingResearchResearch PersonnelResearch ProposalsRoleSchemeSignal TransductionSystemTechniquesTechnologyUniversitiesVariantVisionWristdesigndesiregraspindependent component analysiskinematicsmotor controlpre-doctoralrobotic devicesensor
项目摘要
DESCRIPTION (provided by applicant): Ongoing development of Implantable Myoelectric Sensors (IMES) technology increases the number and integrity of electromyographic (EMG) control signals. The long-term vision of this research proposal is to recreate construction of natural motor behavior in hand/wrist prostheses. Specifically, it is proposed to investigate the use of simplifying strategies and postural synergies by the intact central and peripheral nervous systems in controlling complex reach-to-grasp movements. Subjects will perform reaching movements to grasp objects found in an everyday task environment, requiring different grasp patterns. Intramuscular EMG data from up to ten extrinsic hand muscles, along with kinematic hand and wrist data, will be recorded during grasping. Independent component analysis techniques will be used to analyze EMG and kinematic data to determine the existence of simple postural synergies. These simplifying strategies will also be investigated in amputees for controlling complex hand/wrist prostheses. By creating a prosthesis controller that implements simplifying strategies much like the intact motor control system, it is hoped that more functionality can be added to hand/wrist prostheses without increasing the user's mental load.
描述(由申请人提供):植入式肌电传感器(IMES)技术的持续开发增加了肌电(EMG)控制信号的数量和完整性。这项研究计划的长期愿景是重建手/腕关节假体的自然运动行为。具体而言,它建议调查使用简化策略和姿势的协同作用,由完整的中枢和外周神经系统控制复杂的达到把握运动。受试者将执行伸手动作来抓取日常任务环境中发现的物体,需要不同的抓取模式。在抓握过程中,将记录来自多达10个外部手部肌肉的肌内EMG数据,沿着手部和腕部的运动学数据。独立成分分析技术将用于分析EMG和运动学数据,以确定是否存在简单的姿势协同作用。这些简化策略也将在截肢者控制复杂的手/腕关节假体。通过创建一个假肢控制器,实现简化的策略很像完整的电机控制系统,希望更多的功能可以添加到手/手腕假肢,而不增加用户的精神负荷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ABIDEMI BOLU AJIBOYE其他文献
ABIDEMI BOLU AJIBOYE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ABIDEMI BOLU AJIBOYE', 18)}}的其他基金
Improving intracortical control of reaching after paralysis
改善瘫痪后到达的皮质内控制
- 批准号:
10191068 - 财政年份:2020
- 资助金额:
$ 2.83万 - 项目类别:
Improving intracortical control of reaching after paralysis
改善瘫痪后到达的皮质内控制
- 批准号:
10686810 - 财政年份:2020
- 资助金额:
$ 2.83万 - 项目类别:
Improving intracortical control of reaching after paralysis
改善瘫痪后到达的皮质内控制
- 批准号:
10438666 - 财政年份:2020
- 资助金额:
$ 2.83万 - 项目类别:
Restoring High Dimensional Hand Function to Persons with Chronic High Tetraplegia
帮助慢性高位四肢瘫痪患者恢复高维手部功能
- 批准号:
9906766 - 财政年份:2018
- 资助金额:
$ 2.83万 - 项目类别:
Restoring High Dimensional Hand Function to Persons with Chronic High Tetraplegia
帮助慢性高位四肢瘫痪患者恢复高维手部功能
- 批准号:
10631849 - 财政年份:2018
- 资助金额:
$ 2.83万 - 项目类别:
Neural Representation of Reach-to-Grasp for Cortical FES Neuroprostheses
皮质 FES 神经假体的触手可及的神经表征
- 批准号:
8838222 - 财政年份:2012
- 资助金额:
$ 2.83万 - 项目类别:
Neural Representation of Reach-to-Grasp for Cortical FES Neuroprostheses
皮质 FES 神经假体的触手可及的神经表征
- 批准号:
8278391 - 财政年份:2012
- 资助金额:
$ 2.83万 - 项目类别:
Neural Representation of Reach-to-Grasp for Cortical FES Neuroprostheses
皮质 FES 神经假体的触手可及的神经表征
- 批准号:
8495813 - 财政年份:2012
- 资助金额:
$ 2.83万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 2.83万 - 项目类别:
Research Grant