TOMOGRAPHY OF FROZEN-HYDRATED TISSUE SECTIONS
冷冻水合组织切片的断层扫描
基本信息
- 批准号:7357274
- 负责人:
- 金额:$ 6.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2007-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. ABSTRACT: Electron microscopic study of frozen-hydrated biological material avoids the necessity for chemical fixation, dehydration, and staining, and thus provides a view of the specimen in a ?near-native? state. The water in biological specimens must be frozen in ?vitreous? or amorphous form in order to avoid nanometer-scale damage to the specimen due to ice crystal formation. For tissue, the preferred method is high-pressure freezing, due to the depth of good freezing that can be obtained. The frozen tissue must be maintained below the de-vitrification temperature (~-140?C) throughout ultramicrotomy and microscopy. Steady progress has been made over the past two decades in cutting frozen-hydrated sections. Although it remains a challenging task, improved cryo-ultramicrotomes and diamond knives, together with the collective experience of the few laboratories engaged in this work, provided a good starting point for investigators wishing to make use of frozen-hydrated sections. In April, 2002, we were the first laboratory to obtain electron tomograms of frozen-hydrated sections (from high-pressure frozen rat liver tissue). The most important finding was that the interior of the section was free of surface artifacts, thus good 3-D information could be obtained. ? Hsieh, C.-E., Marko, M., Frank, J., and Mannella, C.A. 2002. Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 138:63-73. We did subsequent work in three areas: improvements in high-pressure freezing, comparison of frozen-hydrated and freeze-substituted material, and improvements in section attachment to grids. Rat liver tissue was frozen using needle biopsy kits, with which it was possible to freeze tissue within 40 sec of blood flow cessation. Some tissue was freeze-substituted and embedded in plastic. The main differences between the two techniques related to the relative contrast of cellular components. Tomograms of frozen-hydrated sections that showed excellent structural preservation and also exhibited good sectioning quality, with few surface artifacts (crevasses). This correlation prompted us to compare electron diffraction patterns of earlier tomograms with those the new ones, to test the hypotheses that the improved cutting quality was due to a lower content of microcrystalline ice after high-pressure freezing. However, signs of crystalline ice were not observed in either case. We investigated means to reduce the irreversible compression that occurs in the sectioning direction. Based on recommendations in the literature, we started tested both an oscillating 35¿ cryo diamond knife and a 25¿ diamond knife, but no improvement in compression was seen in initial tests. One of the major problems with tomography of frozen-hydrated sections is poor attachment of the sections to the gird. This is due in large part to lack of section flatness, which we documented by low-magnification stereo pairs. We found that sections were attached to Quantifoil grids as well as they were to folding grids, although the grids had to be examined shortly after the sections were cut since sections were easily lost in long-term storage. The thinner Quantifoil grids are advantageous for tomography because they allow more open area at high tilt. Use of the microtome?s glass section press tool, and not the polished metal rod, was required to safely flatten the sections on the Quantifoil grids. We also found that the use of molybdenum grids, reduced wrinkling of the carbon film and may aid in section attachment. In collaboration with Dr. Toh-Ming Lu of RPI, we have started investigating functionalized coatings for TEM grid that may help frozen-hydrated sections to attach more firmly to the grid. In collaboration with Jay McMahon of RPI, we plan to design and fabricate special two-part grids that firmly clamp, and hopefully flatten, the sections.
该子项目是利用 NIH/NCRR 资助的中心拨款提供的资源的众多研究子项目之一。子项目和研究者 (PI) 可能已从另一个 NIH 来源获得主要资金,因此可以在其他 CRISP 条目中得到体现。列出的机构是中心的机构,不一定是研究者的机构。摘要:冷冻水合生物材料的电子显微镜研究避免了化学固定、脱水和染色的必要性,从而提供了“接近天然”的标本视图。状态。生物标本中的水必须冷冻在“玻璃体”中。或无定形形式,以避免由于冰晶形成而对样品造成纳米级损坏。对于组织,首选方法是高压冷冻,因为可以获得良好的冷冻深度。在整个超薄切片和显微镜检查过程中,冷冻组织必须保持在去玻璃化温度(~-140°C)以下。过去二十年来,冷冻水合切片的切割取得了稳步进展。尽管这仍然是一项具有挑战性的任务,但改进的冷冻超薄切片机和金刚石刀,以及从事这项工作的少数实验室的集体经验,为希望利用冷冻水合切片的研究人员提供了一个良好的起点。 2002 年 4 月,我们是第一个获得冷冻水合切片(来自高压冷冻大鼠肝组织)的电子断层图的实验室。最重要的发现是截面内部没有表面伪影,因此可以获得良好的 3D 信息。 ? Hsieh, C.-E.、Marko, M.、Frank, J. 和 Mannella, C.A. 2002.冷冻水合组织切片的电子断层扫描分析。 J.结构。生物。 138:63-73。 我们在三个领域进行了后续工作:高压冷冻的改进、冷冻水合材料和冷冻替代材料的比较以及网格切片附着的改进。 使用针吸活检套件冷冻大鼠肝组织,可以在血流停止后 40 秒内冷冻组织。一些组织被冷冻替代并嵌入塑料中。两种技术之间的主要区别与细胞成分的相对对比度有关。冷冻水合切片的断层扫描显示出良好的结构保存,并且还表现出良好的切片质量,几乎没有表面伪影(裂缝)。这种相关性促使我们将早期断层图的电子衍射图案与新断层图进行比较,以检验以下假设:切割质量的提高是由于高压冷冻后微晶冰含量较低所致。然而,在这两种情况下都没有观察到结晶冰的迹象。 我们研究了减少切片方向上发生的不可逆压缩的方法。根据文献中的建议,我们开始测试振荡 35° 冷冻金刚石刀和 25° 金刚石刀,但在初始测试中没有看到压缩方面的改善。 冷冻水合切片断层扫描的主要问题之一是切片与网格的附着不良。这在很大程度上是由于缺乏截面平坦度,我们通过低放大倍数立体对记录了这一点。我们发现切片既附着在 Quantifoil 网格上,也附着在折叠网格上,尽管在切割切片后不久必须检查网格,因为切片在长期存储中很容易丢失。 较薄的 Quantifoil 网格有利于断层扫描,因为它们在高倾斜时允许更多的开放区域。为了安全地压平 Quantifoil 网格上的切片,需要使用切片机的玻璃切片压制工具,而不是抛光的金属棒。我们还发现,使用钼网格可以减少碳膜的褶皱,并可能有助于切片附着。 我们与 RPI 的 Toh-Ming Lu 博士合作,开始研究 TEM 网格的功能化涂层,这可能有助于冷冻水合切片更牢固地附着在网格上。我们计划与 RPI 的 Jay McMahon 合作,设计和制造特殊的两部分网格,以牢固地夹紧并有望压平这些部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHYONGERE HSIEH其他文献
CHYONGERE HSIEH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHYONGERE HSIEH', 18)}}的其他基金
相似海外基金
CRYOULTRAMICROTOMY OF FROZEN-HYDRATED SPECIMENS IN CRYO-EM & TOMOGRAPHY
冷冻电镜中冷冻水合标本的冷冻超显微切片术
- 批准号:
7955030 - 财政年份:2009
- 资助金额:
$ 6.75万 - 项目类别:
CRYOULTRAMICROTOMY OF FROZEN-HYDRATED SPECIMENS IN CRYO-EM & TOMOGRAPHY
冷冻电镜中冷冻水合标本的冷冻超显微切片术
- 批准号:
7722822 - 财政年份:2008
- 资助金额:
$ 6.75万 - 项目类别:
CRYOULTRAMICROTOMY OF FROZEN-HYDRATED SPECIMENS IN CRYO-EM & TOMOGRAPHY
冷冻电镜中冷冻水合标本的冷冻超显微切片术
- 批准号:
7597300 - 财政年份:2007
- 资助金额:
$ 6.75万 - 项目类别:
CRYOULTRAMICROTOMY OF FROZEN-HYDRATED SPECIMENS IN CRYO-EM & TOMOGRAPHY
冷冻电镜中冷冻水合标本的冷冻超显微切片术
- 批准号:
7354976 - 财政年份:2006
- 资助金额:
$ 6.75万 - 项目类别:
CRYOULTRAMICROTOMY OF FROZEN-HYDRATED SPECIMENS IN CRYO-EM & TOMOGRAPHY
冷冻电镜中冷冻水合标本的冷冻超显微切片术
- 批准号:
7179862 - 财政年份:2005
- 资助金额:
$ 6.75万 - 项目类别:
CRYOULTRAMICROTOMY OF FROZEN-HYDRATED SPECIMENS FOR CRYO-EM AND TOMOGRAPHY
用于冷冻电镜和断层扫描的冷冻水合标本的冷冻超显微切片
- 批准号:
6975716 - 财政年份:2004
- 资助金额:
$ 6.75万 - 项目类别:














{{item.name}}会员




