Spatially and Temporally Resolved Perturbation of Cells
细胞的空间和时间扰动
基本信息
- 批准号:7279475
- 负责人:
- 金额:$ 16.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAgeAlzheimer&aposs DiseaseAmyloidAnimal ModelAreaBindingBiocompatibleBiologicalBrainCalciumCaliberCell Surface ProteinsCell membraneCell physiologyCellsChemicalsChemistryChromosome PairingComplexConditionCultured CellsDependenceDevelopmentDiseaseDyesEncapsulatedEndocytosisEnsureEnvironmentExclusionExhibitsExocytosisExtravasationFeasibility StudiesGlutamate ReceptorGlutamatesHeightHydrolysisImageIn VitroIndividualIon ChannelIonsKineticsLasersLateralLifeLipidsLocalizedMapsMeasuresMembraneMembrane LipidsMembrane ProteinsMethodsMitogen-Activated Protein KinasesMolecularMolecular WeightMovementN-MethylaspartateNeuronsNeurotransmittersNicotinic ReceptorsNucleic AcidsNumbersOpticsPathway interactionsPatternPeptidesPhotosensitizing AgentsPhysiologic pulsePhysiologicalPliabilityPositioning AttributeProcessPropertyProteinsPulse takingQuantum DotsRangeRateReceptor ActivationResolutionRhodamine BSamplingSeriesSignal PathwaySignal TransductionSignal Transduction PathwaySliceSmall Interfering RNASpatial DistributionStimulusStructureSurfaceSynapsesSynaptic TransmissionSystemTechniquesTimeVesicleWaterWidthWorkabsorptionbasecaged moleculecapsulecell behaviorchemical groupchemical reactionchromophoreconceptcytokinedesigndesireexperienceextracellularin vivointerestmillisecondnanometernanoscalenervous system disorderneurotransmissionphotolysispreventquantumreceptorreceptor densityrelease of sequestered calcium ion into cytoplasmresearch studyresponsesizesmall moleculespatiotemporaltooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): Although a typical cell measures only tens of micrometers in diameter, it is a highly organized and spatially heterogeneous structure. Cell membrane receptors and proteins receive extracellular stimulations and transform them into intracellular signals, signals that dictate the behavior of the cell and errors in the propagation of these signals underlie a wide range of diseases. The distribution of receptors and proteins on the cell membrane determines and affects the rate and pattern of the propagation of these intracellular signals. Membrane proteins are often expressed in different morphological regions of the plasma membrane, and within a local area, the proteins tend to form clusters and patches, rather than distribute homogeneously and continuously on the membrane. To study and dissect the mechanism and signaling pathways by which a single neuronal cell processes the arrival of a particular signal at its membrane surface, we aim to develop a technique by which a precisely timed stimulus or set of stimuli can be delivered to the cell with high spatial (sub-micrometers) and temporal (sub- microseconds) resolution. Such a tool will find use for functional mapping of cell surface proteins and for probing the dynamics of signal transduction and synaptic transmission triggered by the localized activation of receptors. This tool is based both on the ability to synthesize nanoscale capsules and to release the confined molecules from select capsules with a single laser pulse. To develop and demonstrate this method, we have the following aims: (1) Photosensitize the shell of nanocapsules with near-IR dyes or with chromophores that have high two-photon absorption cross sections, so we may use near-IR or two-photon laser pulses to trigger release, (2) Develop new nanocapsules having homogeneous sizes, and which are tunable from ~20nm to ~100nm; these nanocapsules also should be able to encapsulate a wide range of molecules (from small neurotransmitters to peptides and proteins) at high concentrations and should exhibit long-term storability, and (3) Map neuronal response caused by release of physically caged amyloid-¿ 42 (A¿-42). A¿-42 is believed to be the causative factor in Alzheimer disease, although its mechanism of action is poorly understood; here we propose to study the spatial-temporal dynamics of neuronal activation by A¿-42. Cells respond to their environment through a complex and interdependent series of signal transduction pathways that frequently begin at the cell membrane with high spatial and temporal resolutions (e.g. exocytosis, endocytosis, synaptic transmission). To study and dissect the mechanism and signaling pathways by which a cell processes the arrival of a particular signal at its membrane surface, we propose here to develop a method by which a precisely timed stimulus can be delivered to the cell with high spatiotemporal resolution. This method will facilitate the detailed study of signaling pathways that underlie disease processes, such as Alzheimer that is a devastating neurological disease associated with aging.
描述(申请人提供):虽然一个典型的电池直径只有几十微米,但它是一个高度组织和空间异质的结构。细胞膜受体和蛋白质接受细胞外刺激,并将其转化为细胞内信号,这些信号决定了细胞的行为,这些信号的传播错误导致了一系列疾病。细胞膜上受体和蛋白质的分布决定并影响这些细胞内信号的传播速度和模式。膜蛋白通常表达在质膜的不同形态区域,在一个局部区域内,蛋白往往形成簇和斑块,而不是均匀和连续地分布在膜上。为了研究和剖析单个神经元细胞处理特定信号到达其膜表面的机制和信号通路,我们的目标是开发一种技术,通过它可以以高空间(亚微米)和时间(亚微秒)分辨率将精确定时的刺激或一组刺激传递到细胞。这样的工具将被用于细胞表面蛋白的功能图谱,并用于探测由受体的局部激活触发的信号转导和突触传递的动力学。该工具既基于合成纳米级胶囊的能力,也基于使用单一激光脉冲从选定胶囊中释放受限分子的能力。为了开发和验证这种方法,我们的目标是:(1)用近红外染料或具有高双光子吸收截面的生色团对纳米胶囊的壳层进行光敏化,这样我们就可以使用近红外或双光子激光脉冲来触发释放;(2)开发尺寸均匀的新的纳米胶囊,其可调范围从~20 nm到~100 nm;这些纳米胶囊还应该能够在高浓度下包裹各种分子(从小的神经递质到多肽和蛋白质),并且应该表现出长期的储存性,以及(3)由于释放物理笼子中的淀粉样蛋白-42(A?-42)而引起的MAP神经元反应。A?-42被认为是阿尔茨海默病的致病因素,尽管其作用机制尚不清楚;在此,我们建议研究A?-42激活神经元的时空动力学。细胞通过一系列复杂和相互依赖的信号转导途径对环境做出反应,这些信号转导途径通常始于细胞膜,具有高空间和时间分辨率(如胞吐、内吞、突触传递)。为了研究和剖析细胞处理特定信号到达其膜表面的机制和信号通路,我们在这里提出了一种方法,通过它可以以高时空分辨率将精确的定时刺激传递到细胞。这种方法将有助于详细研究疾病过程背后的信号通路,例如阿尔茨海默氏症,这是一种与衰老相关的毁灭性神经疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel T Chiu其他文献
Daniel T Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel T Chiu', 18)}}的其他基金
Predicting neonatal health outcomes from placental and fetal brain extracellular vesicles in pregnant opioid users
通过妊娠阿片类药物使用者的胎盘和胎儿脑细胞外囊泡预测新生儿健康结果
- 批准号:
10747661 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Assessment of fetal brain health via circulating exRNA carriers for opioid use disorder in pregnancy
通过循环 exRNA 载体评估妊娠期阿片类药物使用障碍的胎儿大脑健康
- 批准号:
10722040 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Single Extracellular Vesicle Sorting and Analysis
单个细胞外囊泡分选和分析
- 批准号:
10376602 - 财政年份:2019
- 资助金额:
$ 16.57万 - 项目类别:
Single Extracellular Vesicle Sorting and Analysis
单个细胞外囊泡分选和分析
- 批准号:
9811315 - 财政年份:2019
- 资助金额:
$ 16.57万 - 项目类别:
Developing Bioinformatic and Microfluidic Single Cell Methods for Studying Intratumoral Heterogeneity in Acute Myeloid Leukemia
开发生物信息学和微流体单细胞方法来研究急性髓系白血病的瘤内异质性
- 批准号:
10533290 - 财政年份:2018
- 资助金额:
$ 16.57万 - 项目类别:
Developing Bioinformatic and Microfluidic Single Cell Methods for Studying Intratumoral Heterogeneity in Acute Myeloid Leukemia
开发生物信息学和微流体单细胞方法来研究急性髓系白血病的瘤内异质性
- 批准号:
10601429 - 财政年份:2018
- 资助金额:
$ 16.57万 - 项目类别:
Developing Bioinformatic and Microfluidic Single Cell Methods for Studying Intratumoral Heterogeneity in Acute Myeloid Leukemia
开发生物信息学和微流体单细胞方法来研究急性髓系白血病的瘤内异质性
- 批准号:
10058820 - 财政年份:2018
- 资助金额:
$ 16.57万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Continuing Grant