Targeted Destruction of HIV and HIV-Infected Cells by an Engineered Ribonuclease
通过工程核糖核酸酶靶向破坏 HIV 和 HIV 感染细胞
基本信息
- 批准号:7283356
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:Antiviral AgentsBacillus amyloliquefaciens ribonucleaseBiological AssayCapsidCell DeathCell SurvivalCellsChimeric ProteinsClassCleaved cellConditionCytosolDNADependovirusEndopeptidasesEndoribonucleasesEngineeringEnsureEnzyme Inhibitor DrugsEnzyme InhibitorsEnzymesFree EnergyGene ExpressionGene TransferGenetic MaterialsGenomeGoalsHIVHIV InfectionsHIV ProteaseHumanIn VitroInfectionLife Cycle StagesMediatingMethodsMolecularMolecular ConformationMutationOutcome StudyPancreatic ribonucleasePeptide HydrolasesPeptidesPrincipal InvestigatorPropertyProteinsRNAResearchResistanceReverse Transcriptase InhibitorsRibonucleasesSiteStructureTertiary Protein StructureTestingToxinTransduction GeneUbiquitinViralViral GenesVirionVirusbasecell killingcellular engineeringcytotoxicdesigndesign and constructionkillingsneuronal cell bodynovelparticleprogramsresearch studyvectorvpr Gene Products
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to create a new class of potent toxins that selectively target HIV and HIV-infected cells for destruction. The toxin, an engineered bacterial ribonuclease, is catalytically inactive in uninfected cells and does not harm them. The ribonuclease is activated upon cleavage by HIV protease. The method for suppressing and activating catalytic activity is based on a novel forced-unfolding mechanism. Once activated, the enzyme disrupts HIV infection by three independent mechanisms. First, it kills infected cells by degrading cytosolic RNA. Second, it is packaged into the HIV capsid, where it destroys the HIV RNA genome. Third, it is activated and delivered to cells by the HIV particle itself, upon subsequent rounds of infection. These effects are cumulative. The net result is that HIV infection is halted after a single round. By attacking the virus as well as the cells that harbor it, the proposed method is designed to rid HIV completely from the body, especially when used in conjunction with therapies that activate HIV gene expression in latently-infected cells. The first aim describes the design, construction and in vitro testing of two separate designs of the toxin. The proteins are optimized so that ribonuclease activity is high in the protease-cleaved state and undetectable in the uncleaved form. In the second aim, each of the three anti-HIV mechanisms is tested ex vivo. Toxins are delivered into cultured human cells by direct transduction (facilitated by fusion to the cell-penetrating HIV TAT peptide) as well as by a viral gene vector. The cells are then infected with HIV. Cell viability and viral infectivity assays determine the extent to which the toxins selectively kill infected cells and inactivate HIV. A major benefit of this therapy is that the molecules developed here will retain their potency against viral mutation to a much greater degree than existing protease and reverse transcriptase inhibitors. This study creates a new class of molecules that specifically kill HIV and HIV-infected cells, and do not harm healthy cells. These molecules are engineered to remain potent despite viral mutation. This therapy is designed to eliminate the virus as well as diseased cells from the body.
描述(由申请人提供):该项目的目的是创建一类新的有效毒素,这些毒素有选择地靶向HIV和HIV感染的细胞以破坏。毒素是一种工程的细菌核糖核酸酶,在未感染的细胞中催化不活跃,不会损害它们。 HIV蛋白酶在裂解后激活核糖核酸酶。抑制和激活催化活性的方法是基于一种新型的强制性解释机制。一旦激活,该酶通过三种独立机制破坏了HIV感染。首先,它通过降解胞质RNA杀死受感染的细胞。其次,它被包装到HIV Capsid中,在那里破坏了HIV RNA基因组。第三,在随后的感染后,它被HIV颗粒本身激活并传递到细胞中。这些影响是累积的。最终结果是单轮后将HIV感染停止。通过攻击病毒以及藏有其细胞的细胞,该方法旨在完全摆脱身体,尤其是在与疗法一起使用的疗法中,该疗法激活了在潜在受感染的细胞中激活HIV基因的表达时。第一个目的描述了毒素两种单独设计的设计,构建和体外测试。对蛋白质进行了优化,以使蛋白酶切割态中的核糖核酸酶活性很高,并且在未切换的形式中无法检测到。在第二个目标中,三种抗HIV机制中的每一个都经过体内测试。通过直接转导(通过融合到细胞渗透HIV TAT肽的促进)以及通过病毒基因载体将毒素传递到培养的人类细胞中。然后将细胞感染HIV。细胞活力和病毒感染性测定确定毒素选择性地杀死感染细胞和失活的HIV的程度。这种疗法的一个主要好处是,这里开发的分子将保留其对病毒突变的效力,比现有蛋白酶和逆转录酶抑制剂的程度要大得多。这项研究创建了一类新的分子,这些分子专门杀死HIV和感染了HIV的细胞,并且不会损害健康的细胞。尽管病毒突变,这些分子经过设计以保持有效。该疗法旨在消除体内病毒以及病态细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEWART N LOH其他文献
STEWART N LOH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEWART N LOH', 18)}}的其他基金
Combining protein and DNA engineering to create bioswitches
结合蛋白质和 DNA 工程来创建生物开关
- 批准号:
10707393 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Combining protein and DNA engineering to create bioswitches
结合蛋白质和 DNA 工程来创建生物开关
- 批准号:
10561100 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Mechanism and detection of LECT2 amyloidosis
LECT2淀粉样变性的机制及检测
- 批准号:
10475334 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Targeted Destruction of HIV and HIV-Infected Cells by an Engineered Ribonuclease
通过工程核糖核酸酶靶向破坏 HIV 和 HIV 感染细胞
- 批准号:
7414887 - 财政年份:2007
- 资助金额:
$ 23.5万 - 项目类别:
相似海外基金
Defining the role of conformational entropy in high affinity protein interactions
定义构象熵在高亲和力蛋白质相互作用中的作用
- 批准号:
9191582 - 财政年份:2016
- 资助金额:
$ 23.5万 - 项目类别:
Defining the role of conformational entropy in high affinity protein interactions
定义构象熵在高亲和力蛋白质相互作用中的作用
- 批准号:
9402239 - 财政年份:2016
- 资助金额:
$ 23.5万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
7939932 - 财政年份:2009
- 资助金额:
$ 23.5万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8136461 - 财政年份:2009
- 资助金额:
$ 23.5万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8537210 - 财政年份:2009
- 资助金额:
$ 23.5万 - 项目类别: