Reducing Errors in the Diagnosis of Melanoma using an Intelligent Tutoring System

使用智能辅导系统减少黑色素瘤的诊断错误

基本信息

项目摘要

DESCRIPTION (PROVIDED BY APPLICANT): Our objective is to improve the diagnostic accuracy of community generalist pathologists for malignant melanoma through the use of a cognitive simulation system. Medical error research and clinical error reduction initiatives to date have primarily focused on therapeutic (e.g. medication) errors rather than on diagnostic errors. The diagnostic error rate in general surgical pathology is generally accepted to be approximately 1 %, although there is evidence that these errors are most likely underreported. Cancer of the skin is the most common of all cancers, and melanoma accounts for about 4% of skin cancer cases but causes a large majority of skin cancer deaths. The American Cancer Society estimates that the number of new melanomas diagnosed in the United States is increasing, and about 7,910 people are expected to die of melanomas during 2006. Since 1973, the mortality rate for melanoma has increased by 50%. False negative diagnostic errors for malignant melanoma are the most frequent diagnostic errors for which patients pursue litigation against pathologists and previous studies have estimated that approximately 10% of all pigmented lesions examined are associated with a clinically significant false negative error related to melanoma resulting in significant harm to patients. Previous studies have also shown that generalist pathologists in community private practices (the majority of pathologists examining pigmented lesions) tend to make more errors than pathologists who have received specialty dermatopathology training. This project represents a logical collaboration between two previously independent, successful, and productive investigators. The first is the proposed project PI; a significant portion of her work has been on a project showing how multi institutional voluntary sharing and root cause analysis of anatomic pathology diagnostic errors (including errors related to melanoma) may lead to successful process changes that reduce errors. The second is one of the proposed co-investigators (Crowley), whose major focus has been on the development, deployment, and evaluation of a highly novel cognitive simulation tool, an intelligent tutoring system, which has been shown to effectively improve diagnostic performance for melanomas and other melanocytic lesions. In order to achieve our objective, we aim to test the effectiveness of the intelligent tutoring system as a performance improvement and error reduction intervention in a prospective case control study, with volunteer community pathologists as study subjects. Pre- and post-interventional performance and error rates will be longitudinally measured and tracked. The result of this project will be a model diagnostic error reduction system for melanoma using cognitive simulation that we plan to use locally for proficiency testing and training and to enhance for use at national educational conferences and for national networking.
描述(由申请人提供):我们的目标是通过使用认知模拟系统来提高社区通才病理学家对恶性黑色素瘤的诊断准确性。迄今为止,医疗错误研究和减少临床错误的举措主要关注治疗(例如用药)错误,而不是诊断错误。一般外科病理学的诊断错误率被普遍认为约为 1%,尽管有证据表明这些错误很可能被低估。癌症的 皮肤癌是所有癌症中最常见的,黑色素瘤约占皮肤癌病例的 4%,但导致大部分皮肤癌死亡。美国癌症协会估计,美国新诊断出的黑色素瘤数量正在增加,预计2006年约有7,910人死于黑色素瘤。自1973年以来,黑色素瘤的死亡率已增加了50%。恶性黑色素瘤的假阴性诊断错误是最常见的诊断错误,患者因此向病理学家提起诉讼,之前的研究估计,所有检查的色素病变中约有 10% 与黑色素瘤相关的临床显着假阴性错误有关,从而对患者造成重大伤害。先前的研究还表明,全科病理学家 社区私人诊所(大多数病理学家检查色素病变)往往比接受过专业皮肤病理学培训的病理学家犯更多错误。该项目代表了两位先前独立、成功且富有成效的研究人员之间的逻辑合作。第一个是拟定的项目PI;她的工作的很大一部分是在一个项目上,该项目展示了多机构自愿共享和解剖病理学诊断错误(包括与黑色素瘤相关的错误)的根本原因分析如何导致成功的流程变革,从而减少错误。第二个是拟议的联合研究人员之一(克劳利),他的主要重点是开发、部署、 以及对一种高度新颖的认知模拟工具(智能辅导系统)的评估,该工具已被证明可以有效提高黑色素瘤和其他黑色素细胞病变的诊断性能。为了实现我们的目标,我们旨在以社区病理学家志愿者为研究对象,在前瞻性病例对照研究中测试智能辅导系统作为绩效改进和减少错误干预措施的有效性。将纵向测量和跟踪干预前后的表现和错误率。该项目的成果将是使用认知模拟的黑色素瘤诊断错误减少模型系统,我们计划在本地使用该系统进行能力测试和培训,并增强在国家教育会议和国家网络中的使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANA MARIE GRZYBICKI其他文献

DANA MARIE GRZYBICKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANA MARIE GRZYBICKI', 18)}}的其他基金

BEST PRACTICES FOR STANDARDIZED QA ACTIVITIES IN PATHOLOGY AND LAB MEDICINE
病理学和实验室医学标准化质量保证活动的最佳实践
  • 批准号:
    7614669
  • 财政年份:
    2007
  • 资助金额:
    $ 27.6万
  • 项目类别:
A RESEARCH AGENDA FOR HEALTH LABORATORY PRACTICE
健康实验室实践的研究议程
  • 批准号:
    7695315
  • 财政年份:
    2007
  • 资助金额:
    $ 27.6万
  • 项目类别:
DEVELOPMENT AND EVALUATION OF EVIDENCE-BASED LAB MEDICINE PERFORMANCE INDICATORS
循证实验室医学性能指标的开发和评估
  • 批准号:
    7500792
  • 财政年份:
    2007
  • 资助金额:
    $ 27.6万
  • 项目类别:
A RESEARCH AGENDA FOR HEALTH LABORATORY PRACTICE
健康实验室实践的研究议程
  • 批准号:
    7439924
  • 财政年份:
    2007
  • 资助金额:
    $ 27.6万
  • 项目类别:
DEVELOPMENT AND EVALUATION OF EVIDENCE-BASED LAB MEDICINE PERFORMANCE INDICATORS
循证实验室医学性能指标的开发和评估
  • 批准号:
    7586007
  • 财政年份:
    2007
  • 资助金额:
    $ 27.6万
  • 项目类别:
Reducing Errors in the Diagnosis of Melanoma using an Intelligent Tutoring System
使用智能辅导系统减少黑色素瘤的诊断错误
  • 批准号:
    7738999
  • 财政年份:
    2006
  • 资助金额:
    $ 27.6万
  • 项目类别:
Reducing Errors in the Diagnosis of Melanoma using an Intelligent Tutoring System
使用智能辅导系统减少黑色素瘤的诊断错误
  • 批准号:
    7291543
  • 财政年份:
    2006
  • 资助金额:
    $ 27.6万
  • 项目类别:
Improving Hospital and Laboratory Safety
提高医院和实验室安全
  • 批准号:
    7108274
  • 财政年份:
    2005
  • 资助金额:
    $ 27.6万
  • 项目类别:
BEST PRACTICES FOR STANDARDIZED QA ACTIVITIES IN PATHOLOGY AND LAB MEDICINE
病理学和实验室医学标准化质量保证活动的最佳实践
  • 批准号:
    7401723
  • 财政年份:
    2004
  • 资助金额:
    $ 27.6万
  • 项目类别:
BEST PRACTICES FOR STANDARDIZED QA ACTIVITIES IN PATHOLOGY AND LAB MEDICINE
病理学和实验室医学标准化质量保证活动的最佳实践
  • 批准号:
    7401722
  • 财政年份:
    2004
  • 资助金额:
    $ 27.6万
  • 项目类别:

相似海外基金

Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
Natural language processing and medical imaging analysis for multi-modality computer assisted diagnosis of ophthalmic diseases
自然语言处理和医学影像分析用于眼科疾病多模态计算机辅助诊断
  • 批准号:
    10881194
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
  • 批准号:
    10317682
  • 财政年份:
    2021
  • 资助金额:
    $ 27.6万
  • 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
  • 批准号:
    10496557
  • 财政年份:
    2021
  • 资助金额:
    $ 27.6万
  • 项目类别:
NSF/FDA SIR: A Modeling Tool for Assessment of Radiological Workflow Prioritization Based on Computer-assisted Diagnosis
NSF/FDA SIR:基于计算机辅助诊断的放射工作流程优先级评估建模工具
  • 批准号:
    1935809
  • 财政年份:
    2020
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
Computer Assisted Diagnosis for Predicting Lung Cancer by Using Large Scale Low-Dose CT Database
利用大规模低剂量 CT 数据库预测肺癌的计算机辅助诊断
  • 批准号:
    19K08155
  • 财政年份:
    2019
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computer-assisted diagnosis of thoracic diseases using a large scale 3D-CT image database
利用大规模3D-CT图像数据库开发胸部疾病计算机辅助诊断
  • 批准号:
    15K09919
  • 财政年份:
    2015
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Discovery Grants Program - Individual
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Discovery Grants Program - Individual
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了