The mycorrhizal hyphosphere: a key driver of biogeochemical cycles?

菌根菌丝圈:生物地球化学循环的关键驱动因素?

基本信息

  • 批准号:
    BB/E017304/1
  • 负责人:
  • 金额:
    $ 8.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Atmospheric carbon dioxide (CO2) levels have been rising steadily since the Industrial Revolution mainly as a consequence of human activity. Increased CO2 levels result in more heat absorbed from the sun thus contributing to global warming or 'the greenhouse effect'. This in turn has serious consequences for life on earth with loss of biodiversity, melting glaciers, forest fires and fatal heat waves. One of the major causes of increased CO2 levels is the burning of fossil fuels rapidly releasing carbon that has been stored for centuries back into the atmosphere. In order to cut our use of fossil fuels we can grow crops for energy. The large-scale production of such crops will dramatically alter the agricultural landscape. Energy (or 'biomass') crops are 'carbon neutral'; when burned to generate electricity they only release the same amount of CO2 back into the atmosphere as they fixed. Thus no 'extra' CO2 is released into the atmosphere. Energy crops include tree species such as Willow and Poplar. The roots of these plant species form symbiotic associations with mycorrhizal fungi naturally present in the soil and the term mycorrhizal literally means 'fungus-root'. Of the seven different types of mycorrhizal associations the two most important types are the ectomycorrhizal (ECM) which forms on tree species, and the arbuscular mycorrhizal association (AM), which forms mainly with herbaceous species. While most plants only form one type of association, both Willow and Poplar are unusual in that they can form both ectomycorrhizal or arbuscular mycorrhizal associations. Associations with mycorrhizal fungi can have direct benefits to the plant through increased growth, enhanced nutrient capture and disease suppression. In return, the mycorrhizal fungus obtains a supply of carbon from the host plant which helps it grow and produce an extensive mycelium external to the root. Plants influence the soil immediately surrounding their roots (called the 'rhizosphere') due to the presence of the growing root and as a result of compounds released from the root into the soil. Most of these compounds lost from the root through a passive process called 'exudation', are of low molecular weight and include amino acids, simple sugars and organic acids. These compounds are an ideal substrate for the microbial community; hence microbial populations are always higher in the rhizosphere compared to the bulk soil (i.e. soil not containing roots). Colonisation of roots by mycorrhizal fungi modifies the quantity and quality of compounds released from the roots but it is unknown to what extent the fungus actually contribute to the amount and types of compounds released. Moreover, in mycorrhizal plants, the external phase of the fungus (rather than the root) is the main zone of contact with the soil thus exudation of compounds from the hyphae may also influence microbial activities in the 'hyphosphere'. There is some evidence that ECM fungi can exude simple compounds but much less information on AM fungi although they are believed to improve soil structure by release of compounds from their hyphae. Thus, in this study we will examine to what extent ECM and AM fungi influence their surrounding environment. We will determine how much carbon flows to the fungus from the plant by using the carbon isotopes 14C (which is a radioactive isotope but very sensitive and from which we can obtain images of 14C flow through the plant to the fungus) and 13C (a stable hence non harmful isotope of C). We will also determine what types of compounds are exuded from the fungi by chemical analysis and by using biosensor microorganisms which can report back (via light omission) on the compounds released and the sites of release along the hyphae using a new approach called nanoSIMS. The influence of this hyphal exudation on a key soil process, denitrification, which results in a loss of N and which is also of environmental as well as economic concern will be quantified.
自工业革命以来,大气中的二氧化碳(CO2)水平一直在稳步上升,这主要是人类活动的结果。二氧化碳含量的增加导致从太阳吸收更多的热量,从而导致全球变暖或“温室效应”。这反过来又对地球上的生命造成严重后果,包括生物多样性丧失、冰川融化、森林火灾和致命的热浪。二氧化碳水平增加的主要原因之一是化石燃料的燃烧迅速释放出储存了几个世纪的碳回到大气中。为了减少我们对化石燃料的使用,我们可以种植能源作物。这种作物的大规模生产将极大地改变农业景观。能源(或“生物质”)作物是“碳中性”的;当燃烧发电时,它们只释放相同数量的二氧化碳回到大气中。因此,没有“额外”的二氧化碳被释放到大气中。能源作物包括杨柳和白杨等树种。这些植物物种的根与土壤中天然存在的菌根真菌形成共生关系,术语菌根字面意思是“真菌根”。在7种不同类型的菌根联合体中,最重要的两种类型是外生菌根(ECM)和丛枝菌根联合体(AM),外生菌根主要形成于树种,而丛枝菌根主要形成于草本植物。虽然大多数植物只形成一种类型的协会,杨柳和白杨是不寻常的,因为他们可以形成外生菌根或丛枝菌根协会。与菌根真菌的关联可以通过增加生长、增强养分捕获和疾病抑制对植物产生直接益处。作为回报,菌根真菌从宿主植物获得碳的供应,这有助于它生长并在根外产生广泛的菌丝体。植物影响其根部周围的土壤(称为“根圈”),这是由于生长的根的存在以及从根释放到土壤中的化合物。这些化合物中的大多数通过被称为“渗出”的被动过程从根部损失,具有低分子量,包括氨基酸、单糖和有机酸。这些化合物是微生物群落的理想基质;因此,与散装土壤(即不含根的土壤)相比,根际中的微生物种群总是更高。菌根真菌在根部的定植改变了从根部释放的化合物的数量和质量,但真菌实际上在多大程度上有助于释放化合物的数量和类型尚不清楚。此外,在菌根植物中,真菌的外部相(而不是根)是与土壤接触的主要区域,因此菌丝分泌的化合物也可能影响“菌丝体”中的微生物活性。有一些证据表明,ECM真菌可以分泌简单的化合物,但AM真菌的信息要少得多,尽管它们被认为是通过从菌丝中释放化合物来改善土壤结构。因此,在这项研究中,我们将研究ECM和AM真菌影响其周围环境的程度。我们将通过使用碳同位素14 C(这是一种放射性同位素,但非常敏感,我们可以从中获得14 C通过植物流向真菌的图像)和13 C(一种稳定的因此无害的碳同位素)来确定有多少碳从植物流向真菌。我们还将通过化学分析和使用生物传感器微生物来确定真菌渗出的化合物类型,生物传感器微生物可以使用称为nanoSIMS的新方法报告释放的化合物和沿着菌丝释放的位点。这种菌丝分泌物对一个关键的土壤过程,反硝化作用,导致氮的损失,这也是环境和经济问题的影响将被量化。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy
  • DOI:
    10.1016/j.biombioe.2011.08.015
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Rooney, D. C.;Prosser, J. I.;Hodge, A.
  • 通讯作者:
    Hodge, A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary Bending其他文献

Gary Bending的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary Bending', 18)}}的其他基金

Impacts of warming on boreal peatland microbial community structure and function
变暖对北方泥炭地微生物群落结构和功能的影响
  • 批准号:
    NE/T014644/1
  • 财政年份:
    2020
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
Unravelling the diversity and function of fine root endophytes
揭示细根内生菌的多样性和功能
  • 批准号:
    NE/S010270/1
  • 财政年份:
    2019
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
Extreme rainfall: Unravelling the importance of new climate-rhizosphere feedbacks across contrasting land use systems
极端降雨:揭示不同土地利用系统中新的气候根际反馈的重要性
  • 批准号:
    NE/P014224/1
  • 财政年份:
    2017
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
Roots of decline? Assembly and Function of the Rhizosphere Microbiome in Relation to Yield Decline
衰退的根源?
  • 批准号:
    BB/L025892/1
  • 财政年份:
    2014
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
Yield improvement of oilseed rape through genetic manipulation of rhizosphere exudation
通过根际渗出物的基因操纵提高油菜产量
  • 批准号:
    BB/J019658/1
  • 财政年份:
    2012
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
Yield improvement of oilseed rape through genetic manipulation of rhizosphere exudation
通过根际渗出物的基因操纵提高油菜产量
  • 批准号:
    BB/J019690/1
  • 财政年份:
    2012
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
[AGRIFOOD] Characterisation of microbiotic soil crusts in arable soil and their effect on pesticide fate and persistence
[农业食品] 耕地土壤微生物结皮特征及其对农药归宿和持久性的影响
  • 批准号:
    NE/I019286/1
  • 财政年份:
    2011
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Training Grant
Understanding processes determining soil carbon balances under perennial bioenergy crops CARBO-BIOCROP
了解多年生生物能源作物 CARBO-BIOCROP 下土壤碳平衡的确定过程
  • 批准号:
    NE/H010688/1
  • 财政年份:
    2010
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
Interactions between river bed morphology, water chemistry and microbial diversity and its impact on pollutant biodegradation
河床形态、水化学和微生物多样性之间的相互作用及其对污染物生物降解的影响
  • 批准号:
    NE/H018980/1
  • 财政年份:
    2010
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Training Grant

相似海外基金

The mycorrhizal hyphosphere: a powerful natural engine for plant phosphate nutrition.
菌根菌丝:植物磷酸盐营养的强大天然引擎。
  • 批准号:
    492851-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Applied Research and Development Grants - Level 2
The mycorrhizal hyphosphere: a powerful natural engine for plant phosphate nutrition.
菌根菌丝:植物磷酸盐营养的强大天然引擎。
  • 批准号:
    492851-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Applied Research and Development Grants - Level 2
The mycorrhizal hyphosphere: a key driver of biogeochemical cycles?
菌根菌丝圈:生物地球化学循环的关键驱动因素?
  • 批准号:
    BB/E016359/1
  • 财政年份:
    2007
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
The mycorrhizal hyphosphere: a key driver of biogeochemical cycles?
菌根菌丝圈:生物地球化学循环的关键驱动因素?
  • 批准号:
    BB/E014879/1
  • 财政年份:
    2007
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Research Grant
The function of the hyphosphere in carbon and nutrient partitioning between plants and microorganisms in grassland soils under different land-use intensities
不同土地利用强度下草地土壤菌丝圈在植物和微生物碳养分分配中的作用
  • 批准号:
    60986592
  • 财政年份:
  • 资助金额:
    $ 8.04万
  • 项目类别:
    Infrastructure Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了