Advancing Bayesian network algorithms for inferring gene regulation using an integrative computational-biological approach in a yeast model system
推进贝叶斯网络算法,在酵母模型系统中使用综合计算生物学方法推断基因调控
基本信息
- 批准号:BB/F001398/1
- 负责人:
- 金额:$ 71.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently it has become possible to collect large amounts of data in biology, for example, measuring the expression level of every gene in yeast. This large amount of data in biology has spurred development of computational tools to analyse it. Such data and computational tools enables us to look at biology at a broader level than previously possible: we can examine a large number of interacting elements, instead of doing directed experiments on only a few, enabling investigation into how the entire system behaves. One area of such work is to use computational algorithms to reveal gene regulatory networks. Gene regulation is when a protein--known as a regulator--binds to the DNA near a gene and affects how that gene expressed, either increasing or decreasing the amount of RNA produced. This RNA is then used to make the protein product of the gene. So the binding of the regulator near the gene ultimately affects the amount of protein the gene makes. The regulator is also a protein, and thus was also produced by a gene making RNA making protein. In fact, the regulator could have a regulator of its own. A gene regulatory network is a network formed by proteins that are regulators for other proteins, which either perform some function in the cell or are regulators for yet more proteins. Even though a regulatory network consists of steps going from genes to RNA and RNA to protein, current algorithms use data from only RNA, not proteins. This is mostly because RNA measurement is easier, and thus data is available. However, protein measurement is improving, and it may be important to consider the RNA to protein transition, as regulation could occur at this step too. Here, we propose to improve algorithms that reveal gene regulatory networks by including protein data. Additionally, there is a lot of other information available that might help us figure out the gene regulatory network: locations where regulators have been found to bind to DNA, what genes are near DNA sequences to which we know regulators bind, what proteins bind to each other, and what genes changed expression when another gene was manipulated. We will also add all of these pieces of information into the algorithm, in an effort to take maximal advantage of the available information to accurately predict gene regulatory networks. But making an algorithm that ought to do things is not the whole story--we also have to test it. We will test the algorithms we develop in two ways. First, we will use a simulation, where we make up a gene regulatory network, sample data from it like we are doing a biological experiment--but in the computer, and then see if the algorithm can figure out the gene regulatory network we made. This step helps us figure out where we got things right, when the algorithm finds the correct network, and where we got things wrong, when the algorithm makes mistakes. We can then work on fixing the algorithm to make fewer mistakes. Second, we will take the algorithm we have tested in the simulator, and made as good as we can, and apply it to data taken from yeast in biological laboratory. The algorithm will output a network showing what it predicts to be the gene regulatory network based on the data. We will then pick pieces of this network, such as a regulator and gene pair, to test in our own yeast experiment. These tests will tell us if the algorithm is making accurate predictions or not. This type of validation, while important, is rarely performed because different people usually make the algorithms than do the biology. Thus, the proposed research meets this often-missed need. The ultimate goal of this research is to produce an algorithm that does a good job of predicting gene regulatory networks. Once we have this algorithm, future research can use it to measure gene regulatory networks and study their features. In particular, we plan to use the algorithm produced here to study the evolution of gene regulatory networks in future projects.
最近,在生物学中收集大量数据已经成为可能,例如,测量酵母中每个基因的表达水平。生物学中的大量数据推动了分析数据的计算工具的发展,这些数据和计算工具使我们能够在比以前更广泛的层面上看待生物学:我们可以研究大量相互作用的元素,而不是只对少数几个元素进行定向实验,从而能够研究整个系统的行为。这些工作的一个领域是使用计算算法来揭示基因调控网络。基因调控是指一种蛋白质(称为调节因子)与基因附近的DNA结合,影响基因的表达,增加或减少RNA的产生量。然后,这种RNA被用来制造基因的蛋白质产物。因此,基因附近的调节因子的结合最终会影响基因产生的蛋白质的数量。调节器也是一种蛋白质,因此也是由基因产生的RNA制造蛋白质。事实上,监管机构可以有自己的监管机构。基因调控网络是由蛋白质形成的网络,这些蛋白质是其他蛋白质的调节剂,这些蛋白质在细胞中执行某些功能,或者是更多蛋白质的调节剂。尽管调控网络由从基因到RNA和RNA到蛋白质的步骤组成,但目前的算法只使用来自RNA的数据,而不是蛋白质。这主要是因为RNA测量更容易,因此数据可用。然而,蛋白质测量正在改进,考虑RNA到蛋白质的转变可能很重要,因为调节也可能发生在这一步。在这里,我们建议通过包括蛋白质数据来改进揭示基因调控网络的算法。此外,还有很多其他可用的信息可以帮助我们弄清楚基因调控网络:已发现的调控因子与DNA结合的位置,我们知道调控因子与哪些基因结合的DNA序列附近,哪些蛋白质相互结合,以及当另一个基因被操纵时,哪些基因改变了表达。我们还将所有这些信息添加到算法中,以最大限度地利用可用信息来准确预测基因调控网络。但是,开发一个应该做事情的算法并不是故事的全部--我们还必须测试它。我们将通过两种方式测试我们开发的算法。首先,我们将使用一个模拟,我们构建一个基因调控网络,从它中采样数据,就像我们在做一个生物实验一样--但是在计算机中,然后看看算法是否能计算出我们构建的基因调控网络。这一步帮助我们找出我们在哪里做对了,算法什么时候找到了正确的网络,以及我们在哪里做错了,算法什么时候出错。然后,我们可以修复算法以减少错误。其次,我们将采取我们在模拟器中测试过的算法,并尽可能地将其应用于从生物实验室的酵母中获取的数据。该算法将输出一个网络,显示它根据数据预测的基因调控网络。然后,我们将挑选这个网络的片段,例如调节器和基因对,在我们自己的酵母实验中进行测试。这些测试将告诉我们算法是否做出了准确的预测。这种类型的验证虽然很重要,但很少执行,因为通常是不同的人制作算法而不是生物学。因此,拟议的研究满足了这一经常被忽视的需求。这项研究的最终目标是产生一种算法,可以很好地预测基因调控网络。一旦我们有了这个算法,未来的研究就可以用它来测量基因调控网络并研究它们的特征。特别是,我们计划在未来的项目中使用这里产生的算法来研究基因调控网络的进化。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel Monte Carlo approach quantifies data assemblage utility and reveals power of integrating molecular and clinical information for cancer prognosis.
- DOI:10.1038/srep15563
- 发表时间:2015-10-27
- 期刊:
- 影响因子:4.6
- 作者:Verleyen W;Langdon SP;Faratian D;Harrison DJ;Smith VA
- 通讯作者:Smith VA
Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats.
通过计算机辅助转换饮酒大鼠大脑的微阵列数据获得的交互式分子网络。
- DOI:10.1055/s-0029-1216348
- 发表时间:2009
- 期刊:
- 影响因子:4.3
- 作者:Matthäus F
- 通讯作者:Matthäus F
Systems Biology in Psychiatric Research - From High-Throughput Data to Mathematical Modeling
精神病学研究中的系统生物学 - 从高通量数据到数学建模
- DOI:10.1002/9783527630271.ch13
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Matthäus F
- 通讯作者:Matthäus F
Predicting inflation component drivers in Nigeria: a stacked ensemble approach.
预测尼日利亚的通货膨胀因素驱动因素:堆叠集成方法。
- DOI:10.1007/978-3-319-40715-9_9
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Akande EO
- 通讯作者:Akande EO
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Smith其他文献
Analysis of the current state of water-resource management in the UK using Social Network Analysis and Agent-Based Modelling: a case study in the Wear Catchment, County Durham
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Victoria Smith - 通讯作者:
Victoria Smith
Ethical considerations for committees, supervisors and student researchers conducting qualitative research with young people in the United Kingdom
- DOI:
10.1016/j.metip.2021.100050 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Lindsay A. Lenton;Victoria Smith;Alison M. Bacon;Jon May;Jaysan Charlesford - 通讯作者:
Jaysan Charlesford
The use of telmisartan in combination therapy in the management of nephrotic syndrome due to non‐immune‐mediated glomerulonephropathy in a young cat
替米沙坦联合治疗治疗幼猫非免疫介导性肾小球肾病引起的肾病综合征
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.3
- 作者:
D. Casado Bregón;R. Cianciolo;Victoria Smith - 通讯作者:
Victoria Smith
Ethical considerations for committees, supervisors, student researchers conducting qualitative research with young people in the United Kingdom
委员会、主管、学生研究人员对英国年轻人进行定性研究的道德考虑
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lindsay Lenton;Victoria Smith;A. Bacon;J. May;Jaysan J. Charlesford - 通讯作者:
Jaysan J. Charlesford
Western Diet-Induced Dysbiosis Is Associated with Intestinal Hyperplasia and Dysregulation of FXR-FGF19 Gene Expression in Juvenile Iberian Pigs (OR26-03-19)
- DOI:
10.1093/cdn/nzz033.or26-03-19 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:
- 作者:
Victoria Smith;Gabriella Hernandez;Christian Terkatz;Isabell Meyer;Margaret Rice;Daniel Columbus;Mark Edwards;Matthew Burd;Kim Sprayberry;Jennifer VanderKelen;Julia Steinhoff-Wagner;Daniel Peterson;Rob Fanter;Christopher Kitts;Michael La Frano;Douglas Burrin;Magdalena Maj;Rodrigo Manjarin - 通讯作者:
Rodrigo Manjarin
Victoria Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Smith', 18)}}的其他基金
Quantifying how host genotype and microbiome composition combine to influence susceptibility to Dothistroma needle blight disease in pine trees
量化宿主基因型和微生物组组成如何结合影响松树对针叶枯病的易感性
- 批准号:
BB/W020394/1 - 财政年份:2023
- 资助金额:
$ 71.85万 - 项目类别:
Research Grant
NSFGEO-NERC: Collaborative Research: MexiDrill: Developing a 350,000 year record of climate and environmental change in tropical North America
NSFGEO-NERC:合作研究:MexiDrill:开发北美热带地区 35 万年的气候和环境变化记录
- 批准号:
NE/S009035/1 - 财政年份:2018
- 资助金额:
$ 71.85万 - 项目类别:
Research Grant
NSFGEO-NERC: Physical and Chemical Constraints on Large-volume Pyroclastic Blasts: The Campanian Ignimbrite Eruption, Italy
NSFGEO-NERC:大体积火山碎屑爆炸的物理和化学约束:意大利坎帕尼亚火熔岩喷发
- 批准号:
NE/S003584/1 - 财政年份:2018
- 资助金额:
$ 71.85万 - 项目类别:
Research Grant
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 71.85万 - 项目类别:
A methodology for quantitative failure risk analysis using physical modeling and Bayesian network
使用物理建模和贝叶斯网络进行定量故障风险分析的方法
- 批准号:
23K13522 - 财政年份:2023
- 资助金额:
$ 71.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
- 批准号:
10718215 - 财政年份:2023
- 资助金额:
$ 71.85万 - 项目类别:
Investigating Novel Priors in Bayesian Network Meta-Analysis
研究贝叶斯网络元分析中的新先验
- 批准号:
569445-2022 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bayesian Dynamical Modeling of Microbial Communities
微生物群落的贝叶斯动力学建模
- 批准号:
10350044 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别:
Bayesian Data Augmentation for Recurrent Events in Electronic Medical Records of Patients with Cancer
癌症患者电子病历中重复事件的贝叶斯数据增强
- 批准号:
10436083 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别:
Bayesian Dynamical Modeling of Microbial Communities
微生物群落的贝叶斯动力学建模
- 批准号:
10611301 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别:
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
- 批准号:
10700801 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别:
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别:
Studentship
Bayesian Data Augmentation for Recurrent Events in Electronic Medical Records of Patients with Cancer
癌症患者电子病历中重复事件的贝叶斯数据增强
- 批准号:
10579304 - 财政年份:2022
- 资助金额:
$ 71.85万 - 项目类别: