New Methods for Cancer Class Discovery and Prediction: Integration, visualization

癌症类别发现和预测的新方法:整合、可视化

基本信息

项目摘要

DESCRIPTION (provided by applicant): This proposal explores new computational methods for integrating, analyzing and visualizing the rapidly growing genomic and epigenomic information in The Cancer Genome Atlas (TCGA). In the long range these methods and their variants will enable rigorous identification of molecular biomarkers for distinguishing cancer, their subtypes, theirs stages and their outcome, providing the basis for developing improved diagnostics and prognostics. They will also enable identification of the pathways and processes that are central to the initiation and progression of tumors, and thereby inform the choice of therapeutic target selection. Until now most methods for discovering class differences related to cancer have been based on the analysis of mRNA transcription. Here we explore the modification, use and adaptation of advanced statistical methods for integrating TCGA data, and the use of our VISANT mining tool for integrating TCGA with other publicly available data. The long term objective is to develop methods that will be widely disseminated and used to discover reliable biomarkers for cancer development and progression, and to gain a deeper understanding of the key alterations that occur during transformation.
描述(由申请人提供):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES DELISI其他文献

CHARLES DELISI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES DELISI', 18)}}的其他基金

New Methods for Cancer Class Discovery and Prediction: Integration, visualization
癌症类别发现和预测的新方法:整合、可视化
  • 批准号:
    7686950
  • 财政年份:
    2008
  • 资助金额:
    $ 24.38万
  • 项目类别:
Computational Methods for Transcriptional Mapping of Eukaryotic Genomes
真核基因组转录作图的计算方法
  • 批准号:
    7319126
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8878298
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Computational Methods for Transcriptional Mapping of Eukaryotic Genomes
真核基因组转录作图的计算方法
  • 批准号:
    7668034
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8502710
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining Visualization and Analysis
Visant-Predictome:集成、采矿可视化和分析系统
  • 批准号:
    7663288
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8687676
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining Visualization and Analysis
Visant-Predictome:集成、采矿可视化和分析系统
  • 批准号:
    7287965
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining Visualization and Analysis
Visant-Predictome:集成、采矿可视化和分析系统
  • 批准号:
    7457647
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
Visant-Predictome: A System for Integration, Mining, Visualization and Analysis
Visant-Predictome:集成、挖掘、可视化和分析系统
  • 批准号:
    8017145
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了