A cell-based screen for inhibitors of intracellular Abeta aggregation

基于细胞的细胞内 Abeta 聚集抑制剂筛选

基本信息

  • 批准号:
    7622287
  • 负责人:
  • 金额:
    $ 3.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

There is an emerging consensus that non-fibrillar intracellular Abeta aggregates, rather than insoluble fibrils, are the most deleterious Abeta species and may play a central role in Alzheimer's disease (AD) pathogenesis. Thus, an attractive therapeutic approach to AD would be to seletively reduce the levels of potentially synaptotoxic Abeta aggregates by either stabilizing intracellular Abeta in its monomeric form or destabilizing the oligomeric structure. Low molecular weight drugs represent the most attractivetherapeutics for inhibiting Abeta aggregation as many small molecules are capable of permeating the blood-brain barrier (BBB) and crossing cell membranes. Historically, however, protein aggregation has been an extremely difficult target to address with synthetic drug-like molecules, owing in part to the large surface area generally covered by two interacting proteins and to the large, flat binding surfaces between the proteins. Another challenge is that while new types of organic compounds may be extremely potent when tested against isolated targets in the laboratory, they may cross-react with cellular components other than the desired target. Small molecules found in nature, often called 'natural products', typically have spent time inside of a cell during the course of evolution and are less likely to interact in a manner that damages cellular components such as membranes or DMA. In addition, it has been shown recently that many natural products are quite effective at inhibiting a diverse array of protein-protein interactions. Thus, an important question that we are exploring is whether natural products or natural product-like molecules can be isolated that effectively inhibit Abeta aggregation and, at the same time, be tolerated by living cells. The long-term goal of this research is to identify natural product-like inhibitors of intracellular Abeta aggregation that have potential as therapeutic agents for treating AD. Towards this goal, we have generated a cell-based assay for directly monitoring Abeta folding in the intracellular environment. This particular application seeks to: (1) configure our novel cell-based folding assay for high-throughput screening of combinatorial small-molecule libraries; and (2) isolate natural product-like compounds from diversity-oriented synthesis libraries that are capable of antagonizing Abeta aggregation. Such compounds will serve as leads for AD therapy and for biological studies that illuminate the physiological role of Abeta folding in mediating neurotoxicity.
有一个新兴的共识,即非纤维状细胞内Abeta聚集体,而不是不溶性纤维, 是最有害的Abeta种类,并可能在阿尔茨海默病(AD)中发挥核心作用 发病机制因此,一种有吸引力的治疗AD的方法是选择性地降低 通过稳定单体形式的细胞内Abeta或通过抑制潜在的突触毒性Abeta聚集, 使低聚结构不稳定。低分子量药物代表了最有吸引力的治疗方法 由于许多小分子能够透过血脑屏障, (BBB)和穿过细胞膜。然而,从历史上看,蛋白质聚集一直是一个极其复杂的过程。 用合成的药物样分子很难靶向,部分原因是大的表面积通常 由两个相互作用的蛋白质覆盖,并与蛋白质之间的大而平的结合表面相结合。另一 挑战在于,虽然新型有机化合物在测试时可能非常有效, 在实验室中,当分离的靶点时,它们可能与所需的细胞成分以外的细胞成分发生交叉反应。 目标在自然界中发现的小分子,通常被称为“天然产物”,通常在一个 细胞在进化过程中,不太可能以损害细胞的方式相互作用, 组件,如膜或DMA。此外,最近的研究表明, 产物在抑制多种蛋白质-蛋白质相互作用方面相当有效。因此,一个重要的 我们正在探索的问题是,是否可以分离天然产物或类似天然产物的分子 其有效抑制Abeta聚集,同时被活细胞耐受。长期 本研究的目的是鉴定细胞内Abeta聚集的天然产物样抑制剂, 作为治疗AD的治疗剂的潜力。为了实现这一目标,我们已经建立了一种基于细胞的检测方法, 直接监测细胞内环境中的Abeta折叠。本申请旨在:(1) 配置我们的新的基于细胞的折叠分析,用于组合小分子的高通量筛选 文库;和(2)从多样性导向的合成文库中分离天然产物样化合物, 能够拮抗Abeta聚集。这样的化合物将用作AD治疗和AD治疗的先导物。 阐明Abeta折叠在介导神经毒性中的生理作用的生物学研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW P DELISA其他文献

MATTHEW P DELISA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW P DELISA', 18)}}的其他基金

Proteolytic silencing of cancer targets using engineered ubiquitin ligases
使用工程泛素连接酶对癌症靶标进行蛋白水解沉默
  • 批准号:
    8735098
  • 财政年份:
    2013
  • 资助金额:
    $ 3.98万
  • 项目类别:
Proteolytic silencing of cancer targets using engineered ubiquitin ligases
使用工程泛素连接酶对癌症靶标进行蛋白水解沉默
  • 批准号:
    8584010
  • 财政年份:
    2013
  • 资助金额:
    $ 3.98万
  • 项目类别:
Discovery of antibodies that bind G protein-coupled receptors
发现结合 G 蛋白偶联受体的抗体
  • 批准号:
    8091868
  • 财政年份:
    2011
  • 资助金额:
    $ 3.98万
  • 项目类别:
Discovery of antibodies that bind G protein-coupled receptors
发现结合 G 蛋白偶联受体的抗体
  • 批准号:
    8329610
  • 财政年份:
    2011
  • 资助金额:
    $ 3.98万
  • 项目类别:
Rapid isolation of high-affinity human antibodies from large synthetic libraries
从大型合成文库中快速分离高亲和力人类抗体
  • 批准号:
    7803512
  • 财政年份:
    2010
  • 资助金额:
    $ 3.98万
  • 项目类别:
A new technology platform for studying protein function
研究蛋白质功能的新技术平台
  • 批准号:
    7387091
  • 财政年份:
    2008
  • 资助金额:
    $ 3.98万
  • 项目类别:
A new technology platform for studying protein function
研究蛋白质功能的新技术平台
  • 批准号:
    7845989
  • 财政年份:
    2008
  • 资助金额:
    $ 3.98万
  • 项目类别:
A new technology platform for studying protein function
研究蛋白质功能的新技术平台
  • 批准号:
    7554632
  • 财政年份:
    2008
  • 资助金额:
    $ 3.98万
  • 项目类别:
A cell-based screen for inhibitors of intracellular Abeta aggregation
基于细胞的细胞内 Abeta 聚集抑制剂筛选
  • 批准号:
    7168742
  • 财政年份:
    2006
  • 资助金额:
    $ 3.98万
  • 项目类别:
A cell-based screen for inhibitors of intracellular Abeta aggregation
基于细胞的细胞内 Abeta 聚集抑制剂筛选
  • 批准号:
    7680747
  • 财政年份:
    2006
  • 资助金额:
    $ 3.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了