Phylogenetic Analysis with Complex Genome Rearrangement Events

复杂基因组重排事件的系统发育分析

基本信息

  • 批准号:
    7426314
  • 负责人:
  • 金额:
    $ 20.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-02 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Phylogenetic analysis is crucial to a wide range of biological and medical research. A new type of data based on gene order and gene content within whole genomes has attracted increasing interest from researchers in the past several years. Specific Aims: The complexity of genome evolution poses many exciting challenges to developers of mathematical models and algorithms. However, the current tools can only be applied to small genomes (such as organelle genomes) evolving via very simple rearrangements events, hence their breadth of usage is limited. We will address these problems by: (1) mathematical modeling and theoretical analysis of complex evolutionary events such as gene duplication and loss; (2) algorithm design and implementation for phylogenetics and gene order reconstruction (3) performance assessment of these new algorithms through extensive testing on simulated and biological datasets; (4) high-performance implementation of the algorithms using algorithm engineering techniques and a flexible approach to parallelization. Contributions and Broader Impact: The broader impacts of the proposed project are several. (1) The development of new theories and algorithms for the efficient reconstruction of phylogenies and inference of ancestral genomes based on complex genome rearrangements will considerably enlarge the scope of research in the field and give rise to interesting new problems in mathematical and computational biology. (2) Efficient and accurate software for phylogenetic analysis and genome comparison, tested on a large variety of real datasets and on an extensive range of simulations, is expected to reveal new evolutionary patterns and to enable the investigation of novel biological questions. (3) A web server hosted by our group (or by our collaborators) will enable biologists to submit their datasets through a user-friendly web interface and get results back within reasonable amount of time, without the burden of installation and learning parallel computation. (4) The project team combines expertise in mathematic modeling, algorithm design, high-performance computing, comparative genomics, and phylogenetics. Students (both undergraduate and graduate) and postdocs on this project will receive valuable interdisciplinary training experience. (5) Both universities have established programs to boost research in computational biology. This project will enable the PIs to establish close interdisciplinary collaborations among departments from both universities and recruit graduate students (especially minorities) to this fast-growing research field.
描述(由申请人提供):系统发育分析对广泛的生物和医学研究至关重要。在过去的几年里,一种基于全基因组中基因顺序和基因含量的新型数据吸引了越来越多的研究人员的兴趣。 具体目标:基因组进化的复杂性给数学模型和算法的开发者带来了许多令人兴奋的挑战。然而,目前的工具只能应用于通过非常简单的重排事件进化的小基因组(如细胞器基因组),因此它们的使用范围有限。我们将通过以下几个方面解决这些问题:(1)复杂进化事件(如基因复制和丢失)的数学建模和理论分析;(2)系统发育和基因顺序重构的算法设计和实现;(3)通过在模拟和生物数据集上的广泛测试来评估这些新算法的性能;(4)使用算法工程技术和灵活的并行化方法实现算法。 贡献和更广泛的影响:拟议项目的更广泛的影响有几个。(1)基于复杂基因组重排的系统发育重建和祖先基因组推断的新理论和新算法的发展将极大地扩大该领域的研究范围,并在数学和计算生物学中引发有趣的新问题。(2)用于系统发育分析和基因组比较的高效和准确的软件,在大量真实数据集和广泛的模拟上进行测试,有望揭示新的进化模式,并使新的生物学问题的研究成为可能。(3)我们团队(或我们的合作者)托管的Web服务器将使生物学家能够通过用户友好的Web界面提交他们的数据集,并在合理的时间内返回结果,而不需要安装和学习并行计算的负担。(4)项目团队结合了数学建模、算法设计、高性能计算、比较基因组学和系统发育学方面的专业知识。该项目的学生(本科生和研究生)和博士后将获得宝贵的跨学科培训经验。(5)两所大学都建立了促进计算生物学研究的项目。该项目将使私人投资机构能够在两所大学的系之间建立密切的跨学科合作,并招募研究生(特别是少数族裔)进入这一快速增长的研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JIJUN TANG其他文献

JIJUN TANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JIJUN TANG', 18)}}的其他基金

Phylogenetic Analysis with Complex Genome Rearrangement Events
复杂基因组重排事件的系统发育分析
  • 批准号:
    7942522
  • 财政年份:
    2009
  • 资助金额:
    $ 20.54万
  • 项目类别:
Phylogenetic Analysis with Complex Genome Rearrangement Events
复杂基因组重排事件的系统发育分析
  • 批准号:
    7161843
  • 财政年份:
    2006
  • 资助金额:
    $ 20.54万
  • 项目类别:
Phylogenetic Analysis with Complex Genome Rearrangement Events
复杂基因组重排事件的系统发育分析
  • 批准号:
    7239608
  • 财政年份:
    2006
  • 资助金额:
    $ 20.54万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.54万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了