An Auto-Adaptive Interface for Neuromuscular Disabilities
针对神经肌肉障碍的自适应界面
基本信息
- 批准号:7459482
- 负责人:
- 金额:$ 39.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsArticular Range of MotionCalibrationChildCollaborationsComputer information processingComputer softwareComputersDevelopmentDevicesDisabled PersonsDystoniaFeedbackHandHeadHumanIndividualJoystickMeasuresMethodsMotorMovementMusMuscle RigidityMuscle WeaknessNeuromuscular DiseasesNoisePerformancePhasePhysiologicalRange of motion exerciseRehabilitation CentersResearchResearch PersonnelSelf-Help DevicesSeriesSolutionsSpinal cord injuryStimulusStudy SectionSystemTactileTechniquesTechnologyTestingTimeTrackball Device ComponentTremorUniversitiesUpper armUser-Computer InterfaceVirginiaWorkabstractingbasecostdesigndisabilityexperiencehuman subjectimprovedindexingnovelprogramsprototypesuccesstheories
项目摘要
DESCRIPTION (provided by applicant): The proposed research involves the development of assistive technology that is based upon a force-feedback joystick. The Barron Associates Joystick Appliance (BAJA) is targeted at individuals with neuromuscular problems in their arms and/or hands and will compensate for many deficiencies in the operator's own movement capabilities, including lack of strength, coordination, range of motion limitations, and physiologic noise (e.g., tremors). The BAJA's corrective action can provide tactile and proprioceptive stimuli that many users find to be more satisfying and effective than indirect solutions that are based exclusively on software. Unlike other human-computer interface devices, the BAJA can adapt quickly and robustly to a wide variety of different disabilities, including manifestations of spasticity, dystonia, and rigidity, as well as spinal cord injury and muscular weakness. Adaptability is particularly important because no single solution works well for all types of disabilities. Adapting the BAJA for an individual user, as well as quantifocation of the performance improvement realized with its use, is achieved through a novel method that captures the information processing capacity of the human motor system.
描述(由申请人提供):拟议的研究涉及基于力反馈操纵杆的辅助技术的开发。巴伦联合操纵杆器具(BAJA)针对在其手臂和/或手部中具有神经肌肉问题的个体,并且将补偿操作者自身运动能力中的许多缺陷,包括缺乏力量、协调、运动范围限制和生理噪声(例如,震颤)。BAJA的矫正动作可以提供触觉和本体感受刺激,许多用户发现这比完全基于软件的间接解决方案更令人满意和有效。与其他人机界面设备不同,BAJA可以快速、稳健地适应各种不同的残疾,包括痉挛、肌张力障碍和僵硬的表现,以及脊髓损伤和肌肉无力。适应性特别重要,因为没有一个单一的解决方案能很好地适用于所有类型的残疾。适应BAJA为个人用户,以及量化的性能改善实现了与其使用,是通过一种新的方法,捕捉人类运动系统的信息处理能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON B OLOWIN其他文献
AARON B OLOWIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON B OLOWIN', 18)}}的其他基金
An Auto-Adaptive Interface for Neuromuscular Disabilities
针对神经肌肉障碍的自适应界面
- 批准号:
7651359 - 财政年份:2007
- 资助金额:
$ 39.31万 - 项目类别:
An Auto-Adaptive Interface for Neuromuscular Disabilities
针对神经肌肉障碍的自适应界面
- 批准号:
7218948 - 财政年份:2007
- 资助金额:
$ 39.31万 - 项目类别:
TELEpHOne Monitor for the Elderly (TELEHOME)
TELEpHOne 老年人监护仪 (TELEHOME)
- 批准号:
7154241 - 财政年份:2006
- 资助金额:
$ 39.31万 - 项目类别:
SoundTrak Data Acquisition and Analysis System for OSDB
SoundTrak OSDB 数据采集和分析系统
- 批准号:
7053264 - 财政年份:2006
- 资助金额:
$ 39.31万 - 项目类别:
TELEpHOne Monitor for the Elderly (TELEHOME)
TELEpHOne 老年人监护仪 (TELEHOME)
- 批准号:
7803475 - 财政年份:2006
- 资助金额:
$ 39.31万 - 项目类别:
TELEpHOne Monitor for the Elderly (TELEHOME)
TELEpHOne 老年人监护仪 (TELEHOME)
- 批准号:
8049100 - 财政年份:2006
- 资助金额:
$ 39.31万 - 项目类别:
Gait Kinematic Parameter Measurement and Analysis System
步态运动参数测量与分析系统
- 批准号:
6992958 - 财政年份:2003
- 资助金额:
$ 39.31万 - 项目类别:
Gait Kinematic Parameter Measurement and Analysis System
步态运动参数测量与分析系统
- 批准号:
7119224 - 财政年份:2003
- 资助金额:
$ 39.31万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Research Grant