e-CAP: Engineering Cold Atmospheric Plasmas
e-CAP:工程冷大气等离子体
基本信息
- 批准号:EP/D034825/1
- 负责人:
- 金额:$ 43.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plasmas have been called the fourth state of matter - the other three being solids, liquids and gases. Although this may sound exotic they are actually becoming increasingly common. Plasmas are found in flat screen TV and fluorescence tubes, and they are also used in industry to make computer chips. Plasmas are made up of atoms and molecules that carry electric charges. As a result, they are in a highly unstable state and that means that they desperately want to react with something. This offers huge possibilities for numerous practical uses. Today plasmas are beginning to be used to change livings cells, polymers and even human skin! For plasmas to be useful, they need to be close to room temperature and such plasmas are referred to as cold plasmas . Most cold plasmas are generated under vacuum, and vacuum plasmas are both expensive and inconvenient. There is now a way of making cold plasmas in the open air. These new plasmas are often known as cold atmospheric plasmas or CAP. They are cheaper and easier to use than vacuum plasmas, and are set to revolutionise many applications in both industry and medicine. Controlling cold atmospheric plasmas is challenging; if you want to make them stable they tend not to be very reactive and when they are made reactive - by introducing oxygen into them for example - they tend not to be stable! Significantly the efficiency of their applications relies on how reactive they are, and the controllability of their application processes relies on how stable they are. Therefore it is important to develop cold atmospheric plasmas that are sufficiently reactive AND stable, and this is referred to as the stability-reactivity challenge of cold atmospheric plasmas. We want to address the stability-reactivity challenge for radiofrequency cold atmospheric plasmas. This will lead us towards getting to the heart of understanding cold atmospheric plasmas. As engineers, we believe that if we can better understand plasmas they will be put to many more uses in the future. We propose an ambitious strategy that embraces techniques in several different disciplines of science. By integrating plasma physics, biology and reaction chemistry, we will be able to harness knowledge-pockets of CAP science so as to enable, for the first time, a coherent understanding of the stability-reactivity relationship. This is supported by a novel biology-based approach to characterise plasma reactivity and by sophisticated mathematical modelling tools to unravel plasma stability mechanisms. Furthermore, we aim to fundamentally improve the stability-reactivity relationship through engineering innovation to manipulate the dynamics of plasma production. This will be achieved through novel plasma excitation schemes using pulsed and high radiofrequency voltage rather than the usual sinusoidal voltage nominally at 13.56MHz. The proposed work is confidently expected to produce a major advance in both CAP science and its technological capabilities. This work should help achieve an immense range of applications. It is not possible to list here all the possible uses that cold atmospheric plasmas may have, but one that we are particularly excited about is food decontamination. Perhaps you remember the food scare around October 2004 that centred round the use of lettuce dressing in hamburgers sold in fast food restaurants. The lettuce was contaminated with dangerous bacteria called Salmonella. Salads are notoriously difficult to make safe. You cannot use heat, which is the normal way we have of dealing with bugs. Who would want to eat a limp looking excuse for a salad that had its temperature increased even for a short while? The work we want to do with spores will teach us how to make plasmas more deadly to bugs and that could lead to more efficient ways of making lettuce and other fresh foods safe.
等离子体被称为物质的第四种状态-其他三种是固体,液体和气体。虽然这听起来很奇怪,但实际上它们正变得越来越普遍。等离子体存在于平板电视和荧光管中,它们也用于工业中制造计算机芯片。等离子体由携带电荷的原子和分子组成。因此,它们处于高度不稳定的状态,这意味着它们迫切地想对某些东西做出反应。这为许多实际用途提供了巨大的可能性。今天等离子体开始被用来改变活体细胞、聚合物甚至人类皮肤!为了使等离子体有用,它们需要接近室温,并且这样的等离子体被称为冷等离子体。大多数冷等离子体是在真空下产生的,真空等离子体既昂贵又不方便。现在有一种方法可以在户外制造冷等离子体。这些新的等离子体通常被称为冷大气等离子体或CAP。它们比真空等离子体更便宜,更容易使用,并将彻底改变工业和医学中的许多应用。控制冷的大气等离子体是具有挑战性的;如果你想让它们稳定,它们往往不是很活跃,当它们变得活跃时-例如通过向它们中引入氧气-它们往往不稳定!值得注意的是,它们的应用程序的效率取决于它们的反应能力,而它们的应用程序进程的可控性取决于它们的稳定性。因此,重要的是开发具有足够反应性和稳定性的冷大气等离子体,这被称为冷大气等离子体的稳定性-反应性挑战。我们希望解决射频冷大气等离子体的稳定性反应性挑战。这将引导我们进入理解冷大气等离子体的核心。作为工程师,我们相信,如果我们能更好地理解等离子体,它们将在未来得到更多的应用。我们提出了一个雄心勃勃的战略,包括在科学的几个不同学科的技术。通过整合等离子体物理学,生物学和反应化学,我们将能够利用CAP科学的知识袋,以便首次对稳定性-反应性关系有一个连贯的理解。这是支持一种新的生物学为基础的方法来抑制血浆反应性和复杂的数学建模工具,以解开血浆稳定性机制。此外,我们的目标是通过工程创新从根本上改善稳定性-反应性关系,以操纵等离子体产生的动力学。这将通过使用脉冲和高射频电压而不是通常的标称为13.56MHz的正弦电压的新型等离子体激发方案来实现。这项拟议中的工作有望在CAP科学及其技术能力方面取得重大进展。这项工作应该有助于实现广泛的应用。在这里不可能列出冷大气等离子体可能具有的所有可能用途,但我们特别兴奋的是食品去污。也许你还记得2004年10月左右的食品恐慌,其中心是快餐店出售的汉堡包中使用生菜调味料。生菜被称为沙门氏菌的危险细菌污染了。沙拉是出了名的难以保证安全。你不能使用热,这是我们处理虫子的正常方法。谁会想吃一个软绵绵的借口沙拉,它的温度增加了,即使是很短的一段时间?我们想用孢子做的工作将教会我们如何使等离子体对虫子更致命,这可能会导致更有效的方法使生菜和其他新鲜食品安全。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kong其他文献
Human Abuse Liability Assessment of Tobacco and Nicotine Products: Approaches for Meeting Current Regulatory Recommendations.
烟草和尼古丁产品的人类滥用责任评估:满足当前监管建议的方法。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.7
- 作者:
Andrea Vansickel;Sarah A Baxter;N. Sherwood;Michael Kong;Leanne R. Campbell - 通讯作者:
Leanne R. Campbell
OV: Validity-based Optimistic Smart Contracts
OV:基于有效性的乐观智能合约
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Q. Nguyen;Andre Cronje;Michael Kong - 通讯作者:
Michael Kong
Fast Stochastic Peer Selection in Proof-of-Stake Protocols
权益证明协议中的快速随机对等点选择
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Q. Nguyen;Andre Cronje;Michael Kong - 通讯作者:
Michael Kong
Michael Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kong', 18)}}的其他基金
Grant in Aid of Supporting the fourth UK Technological Plasma Workshop
资助第四届英国技术等离子体研讨会的资助
- 批准号:
EP/E025234/1 - 财政年份:2006
- 资助金额:
$ 43.13万 - 项目类别:
Research Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
AGS-FIRP Track 1: Application of an Ice Nucleation Cold Stage for Teaching Cloud Microphysics in Science and Engineering Classes at a Minority-serving Institution
AGS-FIRP 轨道 1:冰核冷台在少数族裔服务机构的科学和工程课程中教授云微物理的应用
- 批准号:
2401140 - 财政年份:2024
- 资助金额:
$ 43.13万 - 项目类别:
Standard Grant
Cold Sintering of Advanced Ceramics and Glass along with Natural Sustainable Materials for Bone Tissue Engineering
先进陶瓷和玻璃以及天然可持续材料的冷烧结用于骨组织工程
- 批准号:
2891030 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
Studentship
A perfect marriage of 3D printing and cold plasma for bone tissue engineering application
3D打印与冷等离子体在骨组织工程应用中的完美结合
- 批准号:
572416-2022 - 财政年份:2022
- 资助金额:
$ 43.13万 - 项目类别:
University Undergraduate Student Research Awards
Cold Regions Ecological Engineering
寒地生态工程
- 批准号:
CRC-2017-00134 - 财政年份:2022
- 资助金额:
$ 43.13万 - 项目类别:
Canada Research Chairs
Engineering injectable cold atmospheric plasma-preserved hydrogel to treat breast cancer
工程可注射冷常压等离子体保存水凝胶治疗乳腺癌
- 批准号:
463187 - 财政年份:2022
- 资助金额:
$ 43.13万 - 项目类别:
Operating Grants
Role of histotripsy synergized CD40 signaling in the re-engineering of cold tumors
组织解剖协同 CD40 信号传导在冷肿瘤再造中的作用
- 批准号:
10390557 - 财政年份:2022
- 资助金额:
$ 43.13万 - 项目类别:
Engineering cold-water plumes for warming rivers
工程冷水羽流使河流变暖
- 批准号:
564627-2021 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
University Undergraduate Student Research Awards
Cold Regions Ecological Engineering
寒地生态工程
- 批准号:
CRC-2017-00134 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
Canada Research Chairs
Engineering injectable cold atmospheric plasma-preserved hydrogel to treat breast cancer
工程可注射冷常压等离子体保存水凝胶治疗乳腺癌
- 批准号:
455833 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
Operating Grants
US Army Cold Regions Research and Engineering Laboratory (CRREL) for support to USAP projects.
美国陆军寒冷地区研究与工程实验室 (CRREL) 为 USAP 项目提供支持。
- 批准号:
2030136 - 财政年份:2020
- 资助金额:
$ 43.13万 - 项目类别:
Contract Interagency Agreement