Integrated Interdisciplinary Training in Computational Neuroscience.
计算神经科学综合跨学科培训。
基本信息
- 批准号:7293611
- 负责人:
- 金额:$ 36.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-30 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:ClinicalCollaborationsDataData AnalysesEducationEducational CurriculumExperimental ModelsFacultyInstitutionJournalsLaboratoriesMental disordersNeurologicNeurosciencesPennsylvaniaPhiladelphiaPopulationQualifyingRecording of previous eventsResearchResearch Project GrantsResearch TrainingRotationSeriesStructureStudentsTrainingTraining ProgramsUnderrepresented MinorityUniversitiesUpdateWomanWorkcomputational neurosciencedesignexperiencemodel developmentpre-doctoralprogramsresearch study
项目摘要
DESCRIPTION (provided by applicant): We propose an interdisciplinary program at the University of Pennsylvania to train outstanding undergraduate and predoctoral students in computational neuroscience. Penn offers unique strengths in basic and clinical neuroscience, both integrated with computational approaches. All participating departments at Penn are national leaders in their field, have a long history of research and educational collaborations, and are located in close proximity on a single campus. The undergraduate and graduate student populations are highly qualified. Twenty-four faculty at Penn, plus faculty at six nearby regional institutions are involved, including experimentalists, modelers, and many faculty with expertise in both domains. The preceptors have extensive experience in education and research training in computational neuroscience. The program consists of three components: an undergraduate research training program, a summer research program for undergraduates, and a predoctoral training program. The focus is on directly integrating Neuroscience and quantitative studies through course work and extensive research training. Students will carry out integrated experimental/modeling research projects directed at computational problems. The structure and strategy of our program is designed to have each student individually achieve a significant research contribution through the integrated development of model, experiment, and data analysis. We propose to develop an integrated undergraduate curriculum in computational neuroscience including a new, keystone course, and to significantly update and expand our current graduate courses in computational neuroscience-all including substantial laboratory components. We will also introduce a dedicated seminar series, separate undergraduate and graduate journal clubs, an annual retreat, and other programmatic activities. A distinguishing focus of our program is on application of computational neuroscience to neurological and psychiatric disorders. Students will undertake clinical rotations, analyze clinically obtained data, and have the option of rotations on computational projects in Penn's clinically-directed research centers. A summer research program will be developed, which will attract undergraduates primarily from the Philadelphia region. Six nearby universities are participating in this summer program, including Swarthmore, Drexel, Temple, Haverford, Bryn Mawr, and Lincoln Universities. The summer program will be designed to engage and excite students to pursue graduate work in computational neuroscience. The student population will include a significant proportion of women and underrepresented minorities.
描述(由申请人提供):我们在宾夕法尼亚大学提出了一个跨学科项目,以培养计算神经科学领域的优秀本科生和博士生。宾夕法尼亚大学在基础和临床神经科学方面具有独特的优势,两者都与计算方法相结合。宾夕法尼亚大学的所有参与部门都是各自领域的国家领导者,拥有悠久的研究和教育合作历史,并且位于一个校园内,距离很近。本科生和研究生群体素质很高。宾夕法尼亚大学的 24 名教职人员以及附近六个地区机构的教职人员参与其中,其中包括实验学家、建模师以及许多在这两个领域具有专业知识的教职人员。导师们在计算神经科学的教育和研究培训方面拥有丰富的经验。该项目由三个部分组成:本科生研究培训项目、本科生暑期研究项目和博士前培训项目。重点是通过课程作业和广泛的研究培训直接整合神经科学和定量研究。学生将开展针对计算问题的综合实验/建模研究项目。我们项目的结构和策略旨在让每个学生通过模型、实验和数据分析的集成开发单独实现重大研究贡献。我们建议开发计算神经科学的综合本科课程,包括一门新的重点课程,并显着更新和扩展我们当前的计算神经科学研究生课程——所有课程都包括大量的实验室组成部分。我们还将推出专门的研讨会系列、独立的本科生和研究生期刊俱乐部、年度静修会和其他计划活动。我们项目的一个显着重点是计算神经科学在神经和精神疾病中的应用。学生将进行临床轮转,分析临床获得的数据,并可以选择在宾夕法尼亚大学的临床指导研究中心轮换计算项目。将制定一个夏季研究计划,该计划将吸引主要来自费城地区的本科生。附近的六所大学参加了这个夏季项目,包括斯沃斯莫尔大学、德雷克塞尔大学、坦普尔大学、哈弗福德大学、布林莫尔大学和林肯大学。该暑期项目旨在吸引和激励学生攻读计算神经科学的研究生学位。学生人口中将包括很大比例的女性和代表性不足的少数族裔。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leif H. Finkel其他文献
Leif H. Finkel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leif H. Finkel', 18)}}的其他基金
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7213726 - 财政年份:2006
- 资助金额:
$ 36.95万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience.
计算神经科学综合跨学科培训。
- 批准号:
7289460 - 财政年份:2006
- 资助金额:
$ 36.95万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 36.95万 - 项目类别:
相似海外基金
RAPID International Type I: Collaborative Research: COVID Data Infrastructure Builders: Creating Resilient and Sustainable Research Collaborations
RAPID 国际 I 类:协作研究:新冠病毒数据基础设施建设者:创建有弹性和可持续的研究合作
- 批准号:
2109924 - 财政年份:2021
- 资助金额:
$ 36.95万 - 项目类别:
Standard Grant
RAPID International Type I: Collaborative Research: COVID Data Infrastructure Builders: Creating Resilient and Sustainable Research Collaborations
RAPID 国际 I 类:协作研究:新冠病毒数据基础设施建设者:创建有弹性和可持续的研究合作
- 批准号:
2109966 - 财政年份:2021
- 资助金额:
$ 36.95万 - 项目类别:
Standard Grant
RAPID International Type I: Collaborative Research: COVID Data Infrastructure Builders: Creating Resilient and Sustainable Research Collaborations
RAPID 国际 I 类:协作研究:新冠病毒数据基础设施建设者:创建有弹性和可持续的研究合作
- 批准号:
2109653 - 财政年份:2021
- 资助金额:
$ 36.95万 - 项目类别:
Standard Grant
Administrative Supplement to Support Collaborations to Improve AIML-Readiness of NIH-Supported Data for Parent Award SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
支持合作的行政补充,以提高 NIH 支持的家长奖数据的 AIML 就绪性 SCH:头部自适应放射治疗的个性化重新安排
- 批准号:
10594327 - 财政年份:2021
- 资助金额:
$ 36.95万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10621486 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10267191 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
Data CI Pilot: NCAR and NEON Cyberinfrastructure Collaborations to Enable Convergence Research Linking the Atmospheric and Biological Sciences
数据 CI 试点:NCAR 和 NEON 网络基础设施合作,实现连接大气和生物科学的融合研究
- 批准号:
2039932 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
Standard Grant
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10657966 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10396214 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
SPARC: Supporting Patient Access, Real-world data, and critical Collaborations
SPARC:支持患者访问、真实数据和关键协作
- 批准号:
10471230 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:














{{item.name}}会员




