Combinatorics of Sequences and Tilings and its Applications

序列与平铺的组合及其应用

基本信息

  • 批准号:
    EP/D058465/1
  • 负责人:
  • 金额:
    $ 27.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the intriguing aspects of Nature is the symmetry and order apparent in the world around us, for instance in the shape of crystals, or, at a microscopic level, in the regular arrangement of atoms making up the crystal. We have a surprisingly limited understanding of the origin of order and symmetry; and, maybe even more surprisingly, no clear mathematical definition of the concept of order exists. In the example of the crystal, the underlying order is apparent in the periodic arrangement of its constituents. It is particular interesting to investigate ordered structures that lack periodicity, and disordered systems that still show an apparent degree of order. For instance, a Penrose tiling of the plane consist of two basic shapes, which, when arranged properly, allow for an arbitrary large tiling, but never one that exactly repeats itself. Such structures are not only fascinating from a mathematical point of view, but are physically realised in quasicrystals. These are crystals occurring in particular metal alloys which possess an intricate non-periodic order of atoms. Due to the lack of periodicity in the structure, each atom has its own individual environment, and if one looks far enough around, no two atoms will ever have exactly the same surroundings. Therefore, it is interesting to look at properties of such structures, such as the mean number of neighbours of an atom, or mean numbers of atoms at certain distances. Such quantities are related to the diffraction patters of these materials, which provide the experimental proof of the order in the atomic positions. In a more abstract setting, thinking of a structure represented by a tiling, the corresponding question is that of the mean number of vertices in the tiling that are at a certain distance from a given vertex, averaged over all possible vertices as the centres. These numbers are called the averaged shelling numbers, and they are an example of the type of properties that are investigated in this project. The calculation of these numbers turns out to be related to interesting properties of certain types of numbers, such as factorisation of numbers into prime factors, which is a topic of interest in number theory. Moreover, these numbers and similar combinatorial properties are closely related to models of interest in physics and other sciences. This makes this project interesting from a number of different perspectives, ranging from pure mathematics to applications in physics, crystallography and materials science.
自然界令人感兴趣的一个方面是我们周围世界中明显的对称性和秩序,例如晶体的形状,或者在微观层面上,组成晶体的原子的规则排列。令人惊讶的是,我们对秩序和对称性的起源的理解有限;也许更令人惊讶的是,没有明确的数学定义来定义秩序的概念。在晶体的例子中,潜在的顺序在其成分的周期性排列中是显而易见的。特别有趣的是研究缺乏周期性的有序结构,以及仍然显示出明显有序度的无序系统。例如,平面的彭罗斯瓷砖由两个基本形状组成,如果安排得当,这两个基本形状可以实现任意的大瓷砖,但绝不会完全重复。这种结构不仅从数学角度看很吸引人,而且在物理上是以准晶的形式实现的。这些晶体出现在具有错综复杂的非周期原子顺序的金属合金中。由于结构中缺乏周期性,每个原子都有自己独特的环境,如果你看得足够远,没有两个原子会有完全相同的环境。因此,观察这种结构的性质是很有趣的,例如一个原子的平均邻位数,或者在一定距离上的平均原子数。这些量与这些材料的衍射谱有关,这为原子位置的有序性提供了实验证据。在更抽象的环境中,考虑由平铺表示的结构,相应的问题是平铺中距给定顶点一定距离的顶点的平均数,以所有可能的顶点为中心进行平均。这些数字被称为平均炮击次数,它们是本项目中调查的属性类型的一个例子。事实证明,这些数字的计算与某些类型的数字的有趣性质有关,例如将数字分解为素因数,这是数论中感兴趣的一个主题。此外,这些数字和类似的组合性质与物理学和其他科学中感兴趣的模型密切相关。这使得这个项目从许多不同的角度变得有趣,从纯数学到在物理、结晶学和材料科学中的应用。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the entropy and letter frequencies of powerfree words
关于无动力词的熵和字母频率
  • DOI:
    10.48550/arxiv.0811.2119
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grimm U
  • 通讯作者:
    Grimm U
CSLs of the root lattice $\mathbf{A_4}$
根格 $mathbf{A_4}$ 的 CSL
  • DOI:
    10.48550/arxiv.1301.2001
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heuer M
  • 通讯作者:
    Heuer M
Homometric point sets and inverse problems
等距点集和反演问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uwe Grimm其他文献

A Note on Shelling
  • DOI:
    10.1007/s00454-003-2873-1
  • 发表时间:
    2003-09-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Michael Baake;Uwe Grimm
  • 通讯作者:
    Uwe Grimm

Uwe Grimm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uwe Grimm', 18)}}的其他基金

Novel superior materials based on aperiodic tilings
基于非周期性平铺的新型优质材料
  • 批准号:
    EP/V047108/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Research Grant
Lyapunov Exponents and Spectral Properties of Aperiodic Structures
非周期结构的李亚普诺夫指数和谱性质
  • 批准号:
    EP/S010335/1
  • 财政年份:
    2019
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Research Grant
Systems training in maths informatics and computational biology (SySMIC)
数学信息学和计算生物学系统培训 (SySMIC)
  • 批准号:
    BB/I013660/1
  • 财政年份:
    2011
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Research Grant
How do Shapes Fill Space?
形状如何填充空间?
  • 批准号:
    EP/H004866/1
  • 财政年份:
    2009
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Research Grant

相似海外基金

MFB: Massively parallel identification of translation regulatory sequences in human and viral mRNAs
MFB:大规模并行鉴定人类和病毒 mRNA 中的翻译调控序列
  • 批准号:
    2330451
  • 财政年份:
    2024
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Flexible Indexing of Compressed Sequences
职业:压缩序列的可扩展且灵活的索引
  • 批准号:
    2337891
  • 财政年份:
    2024
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Continuing Grant
TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
  • 批准号:
    2322957
  • 财政年份:
    2024
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Study of nuclear receptors and repeat sequences to reveal the basis of prenatal neurological effects of environmental chemicals
研究核受体和重复序列以揭示环境化学物质对产前神经系统影响的基础
  • 批准号:
    23H00521
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Systematic identification of RNA sequences and protein components regulating circular RNA translation
系统鉴定调节环状 RNA 翻译的 RNA 序列和蛋白质成分
  • 批准号:
    10816653
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
Special Public T Cell Receptor Sequences that Predict Outcomes for Cancer Patients
预测癌症患者预后的特殊公共 T 细胞受体序列
  • 批准号:
    10577518
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
Learning Map Framework to Align Instruction and Improve Student Learning in STEM Course Sequences
学习地图框架可协调 STEM 课程序列中的教学并改善学生的学习
  • 批准号:
    2315492
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Deployment of a Nodal Array to Capture Aftershocks of the 2023 Kahramanmaras Earthquake Sequences in Turkey
合作研究:RAPID:部署节点阵列捕获 2023 年土耳其卡赫拉曼马拉斯地震序列的余震
  • 批准号:
    2322460
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Development of multi omics data analysis method using short/long read integration and complete human reference sequences
使用短/长读长集成和完整的人类参考序列开发多组学数据分析方法
  • 批准号:
    23K11300
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing a web application for learning English spoken formulaic sequences to assist autonomous learning across different school stages
开发用于学习英语口语公式序列的网络应用程序,以协助不同学校阶段的自主学习
  • 批准号:
    23K00681
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了