NONLINEAR RESONANT OPTICAL PHENOMENA AND SOLITONS IN POLARITONIC PHOTONIC CRYSTALS
极化光子晶体中的非线性谐振光学现象和孤子
基本信息
- 批准号:EP/D065992/1
- 负责人:
- 金额:$ 21.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to provide a detailed theoretical understanding of the individual and collective nonlinear dynamics of solitary waves in a special class of artificial materials, namely Polaritonic Photonic Crystals (PPCs). With this generic term we refer to those structures that combine the Bragg periodicity typical of Photonic Crystals and the material resonances due to the existence of quasi-particles existing in semiconductors, namely phonon- or exciton-polaritons. These quasi-particles are the result of the avoided crossing between the photon dispersion and the phonon or exciton dispersion, and due to their phonon/exciton components, they exhibit strong nonlinear interactions of various kinds. The hybridization of the photonic modes with the material polarization leads to qualitative changes in the optical response of the whole system, and the periodicity adds an extra degree of freedom in the manipulation and engineering of the dynamics of optical solitons of novel conception. The first type of PPC considered in the proposal is a Photonic Crystal made of materials which exhibit phonon-polaritons, in which flat optical dispersion characteristics can arise, for certain polarizations of light, due to the coexistence of the Photonic Bandgap (PBG) with the Polariton Bandgap, which can be used to reduce the speed of light in the material or to excite nonlinear waves and solitons with small optical powers, a circumstance that would be beneficial for a variety of commercial applications. Another example of PPC that this project wants to analyze in detail is a structure consisting of multiple Quantum Wells spaced with Bragg periodicity. In this case, no direct photonic Bandgap can arise, because the refractive index is not periodically modulated, but the exciton resonance will acquire a large radiative width, proportional to the number of Quantum Wells. In the limit of a large number of Bragg-spaced Quantum Wells, the exciton linewidth assumes a square profile and turns into an Photonic Bandgap. Contrarily to a conventional PBG, this stop band is active, i.e. can be controlled nonlinearly: the nonlinear interaction between light and exciton-polaritons translates into a nonlinear bandgap response, which can be used to engineer, for instance, ultrafast active Bragg mirrors, trasmittive for low powers and reflective for higher powers. The third and last example of PPC that we consider in this proposal consists of coupled semiconductor microcavities, spaced with a multiple of the Bragg wavelength. Coupling of microcavities provides and extra degree of freedom in the engineering of photonic modes and of their interaction with excitons. New surprising linear physics has been demonstrated in these structures recently, such as a giant Rabi splitting and nonlocal interaction of excitons located in different Quantum Wells; while the nonlinear physics, and especially the dynamics of solitons that are inevitably present in the system due to strong nonlinear interactions between exciton-polaritons, is much less explored and constitutes one of the main themes of this proposal.
本项目旨在对一类特殊的人工材料,即极化光子晶体(PPCs)中孤立波的个体和集体非线性动力学提供详细的理论认识。用这个通用术语,我们指的是那些结合了光子晶体的典型布拉格周期性和由于存在于半导体中的准粒子(即声子或激子极化子)而产生的材料共振的结构。这些准粒子是光子色散与声子或激子色散之间避免交叉的结果,并且由于它们的声子/激子成分,它们表现出各种强的非线性相互作用。光子模式与材料偏振的杂化导致整个系统的光学响应发生了质的变化,这种周期性为新概念光孤子动力学的操纵和工程增加了额外的自由度。该提议中考虑的第一种PPC是由具有声子极化子的材料制成的光子晶体,由于光子带隙(PBG)与极化带隙的共存,在某些偏振的光中可以产生平坦的光学色散特性,这可以用来降低材料中的光速或激发具有小光功率的非线性波和孤子。这种情况将有利于各种商业应用。本项目想要详细分析的PPC的另一个例子是由多个以Bragg周期性间隔的量子阱组成的结构。在这种情况下,不会产生直接光子带隙,因为折射率不是周期性调制的,但激子共振将获得较大的辐射宽度,与量子阱的数量成正比。在大量布喇格空间量子阱的极限下,激子线宽呈现方形轮廓并转变为光子带隙。与传统的PBG相反,该阻带是有源的,即可以非线性控制:光与激子极化子之间的非线性相互作用转化为非线性带隙响应,可用于工程,例如,超快有源布拉格反射镜,低功率时透射,高功率时反射。我们在本提案中考虑的PPC的第三个也是最后一个例子由耦合半导体微腔组成,其间隔为布拉格波长的倍数。微腔的耦合为光子模式的设计及其与激子的相互作用提供了额外的自由度。最近在这些结构中已经证明了新的令人惊讶的线性物理,例如巨大的拉比分裂和位于不同量子阱中的激子的非局部相互作用;而非线性物理,特别是由于激子-极化子之间强烈的非线性相互作用而不可避免地存在于系统中的孤子动力学,则很少被探索,并构成了本提案的主题之一。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber.
- DOI:10.1364/ol.33.002080
- 发表时间:2008-09
- 期刊:
- 影响因子:3.6
- 作者:A. S.;C. Cordeiro;Fabio Biancalana;Peter John Roberts;H. Hernandez-Figueroa;C. Cruz
- 通讯作者:A. S.;C. Cordeiro;Fabio Biancalana;Peter John Roberts;H. Hernandez-Figueroa;C. Cruz
Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding.
- DOI:10.1364/ol.33.002680
- 发表时间:2008-11
- 期刊:
- 影响因子:3.6
- 作者:F. Benabid;Fabio Biancalana;P. Light;F. Couny;Andre N. Luiten;Peter John Roberts;Jiahui Peng;A. Sokolov
- 通讯作者:F. Benabid;Fabio Biancalana;P. Light;F. Couny;Andre N. Luiten;Peter John Roberts;Jiahui Peng;A. Sokolov
Instabilities and solitons in systems with spatiotemporal dispersion
时空色散系统中的不稳定性和孤子
- DOI:10.1364/oe.16.014882
- 发表时间:2008
- 期刊:
- 影响因子:3.8
- 作者:Biancalana F
- 通讯作者:Biancalana F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabio Biancalana其他文献
Shining light on an old problem
让一个老问题重见光明
- DOI:
10.1038/s41566-018-0160-1 - 发表时间:
2018-04-26 - 期刊:
- 影响因子:32.900
- 作者:
Daniele Faccio;Fabio Biancalana - 通讯作者:
Fabio Biancalana
Tunnelling photons challenge interpretation of quantum mechanics
隧道光子挑战量子力学的解释
- DOI:
10.1038/d41586-025-01765-x - 发表时间:
2025-07-02 - 期刊:
- 影响因子:48.500
- 作者:
Alessandro Fedrizzi;Fabio Biancalana - 通讯作者:
Fabio Biancalana
Fabio Biancalana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
SBIR Phase I: Beyond thin-film optics: Resonant grating-based optical component technology
SBIR 第一阶段:超越薄膜光学:基于谐振光栅的光学元件技术
- 批准号:
2304394 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Machine-learning-assisted classification of resonant modes in an optical microcavity lattice
光学微腔晶格中谐振模式的机器学习辅助分类
- 批准号:
575009-2022 - 财政年份:2022
- 资助金额:
$ 21.95万 - 项目类别:
University Undergraduate Student Research Awards
Non-Gaussian statistics and optical rogue waves in resonant nonlinear systems
谐振非线性系统中的非高斯统计和光学流氓波
- 批准号:
RGPIN-2018-05497 - 财政年份:2022
- 资助金额:
$ 21.95万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Resonant Dielectric Optical Metasurfaces for Single-Cell Extracellular Vesicles (EV) Analysis
职业:用于单细胞胞外囊泡 (EV) 分析的共振介电光学超表面
- 批准号:
2143836 - 财政年份:2022
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Non-Gaussian statistics and optical rogue waves in resonant nonlinear systems
谐振非线性系统中的非高斯统计和光学流氓波
- 批准号:
RGPIN-2018-05497 - 财政年份:2021
- 资助金额:
$ 21.95万 - 项目类别:
Discovery Grants Program - Individual
Non-Gaussian statistics and optical rogue waves in resonant nonlinear systems
谐振非线性系统中的非高斯统计和光学流氓波
- 批准号:
RGPIN-2018-05497 - 财政年份:2020
- 资助金额:
$ 21.95万 - 项目类别:
Discovery Grants Program - Individual
RF detection methods for optical biosensing in resonant microvavities
共振微腔中光学生物传感的射频检测方法
- 批准号:
552084-2020 - 财政年份:2020
- 资助金额:
$ 21.95万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: Fundamental Considerations in Using Non-Hermitian Microscale Resonant Optical Structures for Rotation Sensing
EAGER:使用非厄米微尺度谐振光学结构进行旋转传感的基本考虑因素
- 批准号:
2011171 - 财政年份:2019
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant