High sensitivity discovery of cis-regulatory modules

高灵敏度发现顺式调控模块

基本信息

项目摘要

DESCRIPTION (provided by applicant): Although numerous genomes, including the human genome, have been completely sequenced, the specific function of the most of the DNA remains unknown. Identifying all the functional components of genomes has become an important goal of the NIH (e.g., via the ENCODE and modENCODE initiatives). A significant fraction of this DNA is believed to be involved in regulating gene expression, a fundamental process that plays key roles in both normal development and in disease. A basic unit for gene regulation is the cis-regulatory module (CRM; often referred to as an "enhancer"), but identification of these modules on a genomic scale has proven difficult. For the most part, computational methods for CRM discovery have been effective only in those situations where there is already an extensive body of knowledge about the transcription factors that bind to the CRMs, and the sequences (motifs) to which they bind. In this proposal, we develop novel computational tools for CRM discovery. In particular, we depart from current approaches to CRM discovery by developing algorithms that do not rely on prior knowledge of transcription factor binding motifs. By doing so, we are able to identify CRMs even in less well-studied biological contexts where significant prior knowledge is minimal or lacking. We then expand upon this approach by additionally developing methods that utilize partial prior knowledge of CRMs known to be involved in a particular biological process. We will combine our new methods with promising existing approaches to generate a computational pipeline that uses complementary strategies for sensitive and specific CRM discovery, and conduct extensive prediction of CRMs that function in many tissues and cell types. We will take advantage of the powerful genomic and experimental resources available for the model organism Drosophila melanogaster to subject all of our methods to validation both in silico and in vivo, using a large body of existing CRM data that we have compiled and extensive empirical testing in transgenic animals, respectively. The methods we develop here will be instrumental in helping to identify an important class of genomic functional element, the cis-regulatory module, in any metazoan genome. cis-Regulatory modules (CRMs) are key mediators of normal phenotypic variation, drivers of evolutionary change, and causes of birth defects as well as chronic and acute disease. Identifying CRMs genome-wide is an important first step on the way to comprehending both normal and pathological aspects of gene regulation and gene function with broad implications for understanding disease, predicting disease risk, and preventing and curing disease.
描述(由申请人提供):尽管许多基因组,包括人类基因组,已经完全测序,但大多数DNA的特定功能仍然未知。识别基因组的所有功能成分已成为美国国立卫生研究院的一个重要目标(例如,通过ENCODE和modENCODE计划)。这种DNA的很大一部分被认为参与调节基因表达,这是一个在正常发育和疾病中起关键作用的基本过程。基因调控的基本单位是顺式调控模块(CRM,通常称为“增强子”),但在基因组尺度上识别这些模块已被证明是困难的。在大多数情况下,发现CRM的计算方法只有在已经有大量关于与CRM结合的转录因子及其结合的序列(基序)的知识的情况下才有效。在本提案中,我们开发了用于CRM发现的新型计算工具。特别是,我们通过开发不依赖于转录因子结合基序的先验知识的算法,从当前的CRM发现方法中分离出来。通过这样做,即使在研究较少的生物学背景下,我们也能够识别crm,在这些背景下,重要的先验知识很少或缺乏。然后,我们通过另外开发利用已知参与特定生物过程的crm的部分先验知识的方法来扩展这种方法。我们将把我们的新方法与有前途的现有方法结合起来,生成一个计算管道,该管道使用互补策略来发现敏感和特定的CRM,并对在许多组织和细胞类型中起作用的CRM进行广泛的预测。我们将利用模式生物黑腹果蝇强大的基因组和实验资源,利用我们汇编的大量现有CRM数据和在转基因动物中进行的广泛经验测试,对我们所有的方法进行计算机和体内验证。我们在这里开发的方法将有助于在任何后生动物基因组中识别一类重要的基因组功能元件,顺式调控模块。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARC S HALFON其他文献

MARC S HALFON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARC S HALFON', 18)}}的其他基金

REDfly: The regulatory sequence resource for Drosophila and other insects
REDfly:果蝇和其他昆虫的调控序列资源
  • 批准号:
    10267371
  • 财政年份:
    2021
  • 资助金额:
    $ 35.19万
  • 项目类别:
REDfly: The regulatory sequence resource for Drosophila and other insects
REDfly:果蝇和其他昆虫的调控序列资源
  • 批准号:
    9024852
  • 财政年份:
    2016
  • 资助金额:
    $ 35.19万
  • 项目类别:
REDfly: The regulatory sequence resource for Drosophila and other insects
REDfly:果蝇和其他昆虫的调控序列资源
  • 批准号:
    9215682
  • 财政年份:
    2016
  • 资助金额:
    $ 35.19万
  • 项目类别:
Regulatory element discovery in Anopheles gambiae
冈比亚按蚊调控元件的发现
  • 批准号:
    9165377
  • 财政年份:
    2016
  • 资助金额:
    $ 35.19万
  • 项目类别:
High sensitivity discovery of cis-regulatory modules
高灵敏度发现顺式调控模块
  • 批准号:
    7905876
  • 财政年份:
    2008
  • 资助金额:
    $ 35.19万
  • 项目类别:
High sensitivity discovery of cis-regulatory modules
高灵敏度发现顺式调控模块
  • 批准号:
    8303253
  • 财政年份:
    2008
  • 资助金额:
    $ 35.19万
  • 项目类别:
High sensitivity discovery of cis-regulatory modules
高灵敏度发现顺式调控模块
  • 批准号:
    7661575
  • 财政年份:
    2008
  • 资助金额:
    $ 35.19万
  • 项目类别:
High sensitivity discovery of cis-regulatory modules
高灵敏度发现顺式调控模块
  • 批准号:
    8119766
  • 财政年份:
    2008
  • 资助金额:
    $ 35.19万
  • 项目类别:
Empirical assessment of analysis methods for DNA microarrays
DNA 微阵列分析方法的实证评估
  • 批准号:
    7197064
  • 财政年份:
    2007
  • 资助金额:
    $ 35.19万
  • 项目类别:
Computational and Functional Analysis of Gene Networks
基因网络的计算和功能分析
  • 批准号:
    7076196
  • 财政年份:
    2002
  • 资助金额:
    $ 35.19万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了