A Physical Approach to Grain Refinement of Wrought Mg Alloys via Solidification Control

通过凝固控制细化变形镁合金晶粒的物理方法

基本信息

  • 批准号:
    EP/E00119X/2
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Human society is highly dependent on the Earth's climate, as climate patterns largely determine whether we will have enough food and fresh water. The gradual increase in the global temperature, due primarily to the increased amount of an undesirable gas, CO2, in the atmosphere, can cause significant climate changes. Road transport activities account for about 24% of the total man-made CO2 released to the atmosphere, and passenger cars are responsible for about 60% of these emissions. It is therefore an important issue to reduce the CO2 emissions from passenger cars in order to prevent the Earth's climate from deteriorating. One of the most efficient and easiest ways to do this, is to reduce the weight of a car so that the car will burn less petrol or diesel. Magnesium is a very light metal, in fact, some magnesium materials can be made lighter than water. On the other hand, they are still strong enough for making most of the parts used in a car. Therefore, they are very attractive to car manufacturers.Just like a sand castle that is made of many grains of sand, magnesium materials are composed of many small grains as well. The grain size in a magnesium material plays a very important role in determining whether the material is ductile or not. In general, the smaller the grain size, the more ductile the magnesium material will be. It is thus highly beneficial for magnesium materials to have a very small grain size, so that we can readily manufacture them into different shapes, such as sheet, tubes, bars, rods, etc. These forms of magnesium products are all very useful for making car parts and parts used in toys, bicycles, computers, mobile phones, televisions, etc. Unfortunately, large, thick magnesium materials normally have a coarse grain size, as a result, they are not ductile enough. Therefore, one has to use a very slow manufacturing process to make magnesium sheet, tubes, bars, rods, etc. This makes them very expensive and not many customers including most car manufacturers, are willing to use them in a large quantity. It is therefore crucial to reduce their grain size. Similar to the process of water becoming ice, solid magnesium materials start off as liquid magnesium. The change from liquid to solid is called solidification, which determines the grain size of a magnesium material. By effectively controlling the solidification process one can obtain a very fine grain size. In the past 65 years, there have been many efforts towards controlling the solidification process of magnesium materials. Although there have been some positive developments, the resultant grain size is still not small enough. In this programme, we propose a unique approach, designated 'twin-screw melt shearing'; it can effectively control the solidification of a magnesium material. The key point of this approach is to ensure that as many small grains as possible survive in the liquid during solidification. This is done by rapidly lowering the bulk liquid temperature to below a critical value; in doing so, the process will give a very fine and uniform grain size. Preliminary experiments have given very encouraging and exciting results, suggesting that the concept is feasible. Therefore it is hoped that further study into this new solidification control process will develop a hugely beneficial processing system, which will be able to deliver a fine grain size in large, thick magnesium products. It is further anticipated that the new technology will also be applicable to the solidification of other materials, such as aluminium and titanium.The anticipated results from this study will be both environmentally and economically beneficial to the global community.
人类社会高度依赖地球的气候,因为气候模式在很大程度上决定了我们是否有足够的食物和淡水。主要由于大气中不受欢迎的气体CO2的数量增加,全球气温逐渐上升,可能导致重大的气候变化。公路运输活动约占排放到大气中的人为二氧化碳总量的24%,而客运汽车约占这些排放量的60%。因此,减少乘用汽车的CO2排放量以防止地球气候恶化是一个重要的问题。最有效和最简单的方法之一就是减轻汽车的重量,这样汽车就可以燃烧更少的汽油或柴油。镁是一种很轻的金属,事实上,有些镁材料可以做得比水还轻。另一方面,它们仍然足够坚固,可以制造汽车中使用的大部分部件。就像一个沙堡是由许多沙粒组成的一样,镁材料也是由许多小颗粒组成的。镁材料的晶粒尺寸在决定材料是否具有延展性方面起着非常重要的作用。通常,晶粒尺寸越小,镁材料的延展性越大。因此,镁材料具有非常小的晶粒尺寸是非常有益的,使得我们可以容易地将它们制造成不同的形状,例如片、管、棒、杆等。这些形式的镁产品对于制造汽车部件和用于玩具、自行车、计算机、移动的电话、电视机等的部件都非常有用。不幸的是,大而厚的镁材料通常具有粗的晶粒尺寸,结果,它们的延展性不够。因此,人们必须使用非常缓慢的制造过程来制造镁板、管、棒、杆等,这使得它们非常昂贵,并且包括大多数汽车制造商在内的许多客户都不愿意大量使用它们。因此,降低其粒度至关重要。类似于水变成冰的过程,固体镁材料开始成为液体镁。从液体到固体的变化称为凝固,这决定了镁材料的晶粒尺寸。通过有效地控制凝固过程,可以获得非常细的晶粒尺寸。在过去的65年中,已经有许多努力来控制镁材料的凝固过程。虽然有一些积极的发展,但最终的晶粒尺寸仍然不够小。在这个项目中,我们提出了一种独特的方法,称为“双螺杆熔体剪切”;它可以有效地控制镁材料的凝固。这种方法的关键点是确保在凝固过程中尽可能多的小颗粒在液体中存活。这是通过快速降低大量液体温度到临界值以下来实现的;在这样做的过程中,该过程将产生非常精细和均匀的晶粒尺寸。初步的实验已经给出了非常令人鼓舞和令人兴奋的结果,表明这个概念是可行的。因此,希望对这种新的凝固控制工艺的进一步研究将开发出一种非常有益的加工系统,该系统将能够在大而厚的镁产品中提供细晶粒尺寸。预计这项新技术也将适用于铝和钛等其他材料的凝固,这项研究的预期结果将对全球社会产生环境和经济效益。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poster
海报
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bennett N G
  • 通讯作者:
    Bennett N G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nick Bennett其他文献

Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors
  • DOI:
    10.1140/epjb/e2020-10455-0
  • 发表时间:
    2020-11-23
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Neophytos Neophytou;Vassilios Vargiamidis;Samuel Foster;Patrizio Graziosi;Laura de Sousa Oliveira;Dhritiman Chakraborty;Zhen Li;Mischa Thesberg;Hans Kosina;Nick Bennett;Giovanni Pennelli;Dario Narducci
  • 通讯作者:
    Dario Narducci

Nick Bennett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nick Bennett', 18)}}的其他基金

Vacancy-Rich Silicon as a Flexible Thermoelectric Material
富空位硅作为柔性热电材料
  • 批准号:
    EP/N03516X/1
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Industrial CASE Account - Portsmouth 2008
工业 CASE 帐户 - 朴茨茅斯 2008 年
  • 批准号:
    EP/G501688/1
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Training Grant
A Physical Approach to Grain Refinement of Wrought Mg Alloys via Solidification Control
通过凝固控制细化变形镁合金晶粒的物理方法
  • 批准号:
    EP/E00119X/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Intragrain Oxygen-isotope Zoning and the Fast Grain Boundary Model: A New Approach to Thermal Histories and Fluid-rock Interactions
粒内氧同位素分区和快速晶界模型:热史和流体-岩石相互作用的新方法
  • 批准号:
    1650355
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RESEARCH-PGR: A Genome-level Approach to Balancing the Vitamin Content of Maize Grain
研究-PGR:平衡玉米籽粒维生素含量的基因组水平方法
  • 批准号:
    1546657
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Study of random grain boundary structures by geometrical approach
用几何方法研究随机晶界结构
  • 批准号:
    15K06420
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new approach to (U-Th)/He thermochronometry: exploiting the natural dispersion of single grain ages to obtain robust thermal history information
(U-Th)/He 测温新方法:利用单晶年龄的自然分散来获取可靠的热历史信息
  • 批准号:
    NE/J013242/1
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grant
New approach to control grain boundary behaviour in superconducting thin films
控制超导薄膜晶界行为的新方法
  • 批准号:
    DP110100398
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
An Experimental and Modelling Approach to Engineering the Stability of Mixed Micro- and Nano-Grain Size Polycrystals to Improve Durability
设计混合微米和纳米晶粒尺寸多晶稳定性以提高耐用性的实验和建模方法
  • 批准号:
    EP/H009698/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grant
An Experimental and Modelling Approach to Engineering the Stability of Mixed Micro- and Nano-Grain Size Polycrystals to Improve Durability
设计混合微米和纳米晶粒尺寸多晶稳定性以提高耐用性的实验和建模方法
  • 批准号:
    EP/H007008/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A Novel Approach to Grain Refinement of Cast Metals
铸造金属晶粒细化的新方法
  • 批准号:
    DP1095737
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
An Experimental and Modelling Approach to Engineering the Stability of Mixed Micro- and Nano-Grain Size Polycrystals to Improve Durability
设计混合微米和纳米晶粒尺寸多晶稳定性以提高耐用性的实验和建模方法
  • 批准号:
    EP/H006729/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Separating the Grain from the Chaff: a Functional and Comparative Approach to Elucidate Particle Selection Mechanims in Suspension-Feeding Molluscs
合作研究:从谷壳中分离谷物:阐明悬浮摄食软体动物颗粒选择机制的功能和比较方法
  • 批准号:
    0718820
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了