Quasinormal subgroups of finite p-groups
有限 p 群的拟正规子群
基本信息
- 批准号:EP/E006299/1
- 负责人:
- 金额:$ 1.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Every finite group G is the product of its Sylow subgroups, one for each prime p dividing the order of G. These are the maximal subgroups of G of order a power of p. Finite groups are particularly well understood modulo their Sylow subgroups. For example, the simple groups (with no proper non-trivial normal subgroups) are all known; and there is a vast theory of soluble groups (i.e. those formed from abelian groups via extensions), where much detailed structure has been discovered. The same cannot be said of the p-groups themselves, however. A precise classification is out of the question and there are few deep theorems about them. (Though in recent years very striking progress has been made via pro-p-groups, proving the so-called Leedham-Green/Newman conjectures.) The project described here will investigate the quasinormal (qn for short) subgroups of an arbitrary finite p-group G. They form a significantly larger class than the normal subgroups of G, and the idea is to be able to say more about the structure of G in terms of its qn subgroups. A qn subgroup H possesses the symmetrical property of permuting under multiplication with every subgroup K, i.e. HK=KH. In fact the qns, not the normal subgroups, are precisely the ones that are invariant (as a set) under the symmetries of the group's lattice of subgroups. It is conjectured that qn subgroups are plentiful and that their situation within the containing group is of a regular and describable form.
每个有限群G都是它的Sylow子群的乘积,每个素数p都有一个Sylow子群来划分G的阶。这些都是最大的子群G的顺序幂p.有限群是特别好理解模他们的西洛子群。例如,单群(没有适当的非平凡正规子群)都是已知的;有一个庞大的可解群理论(即通过扩张从阿贝尔群形成的群),其中已经发现了许多详细的结构。然而,p-群本身却不能这么说。精确的分类是不可能的,关于它们也没有什么深刻的定理。(尽管近年来通过亲p团体取得了非常惊人的进展,证明了所谓的Leedham-Green/纽曼理论。本文研究了任意有限p-群G的拟正规(简称qn)子群。它们形成了一个比G的正规子群大得多的类,并且这个想法是能够用它的qn子群来更多地描述G的结构。一个qn子群H在与每个子群K的乘法下具有置换的对称性质,即HK=KH。事实上,qn(而不是正规子群)恰恰是在群的子群格的对称性下不变的(作为集合)。证明了qn子群是丰富的,并且它们在包含群中的位置是正则的和可描述的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stewart Stonehewer其他文献
Quasinormal subgroups of order p 2
- DOI:
10.1007/s11587-008-0029-6 - 发表时间:
2008-05-29 - 期刊:
- 影响因子:1.100
- 作者:
John Cossey;Stewart Stonehewer;Giovanni Zacher - 通讯作者:
Giovanni Zacher
Abelian quasinormal subgroups of finite <em>p</em>-groups
- DOI:
10.1016/j.jalgebra.2010.03.007 - 发表时间:
2011-01-15 - 期刊:
- 影响因子:
- 作者:
John Cossey;Stewart Stonehewer - 通讯作者:
Stewart Stonehewer
Stewart Stonehewer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
on the fusion of elementary abelian subgroups of a finite p-group
关于有限 p 群的初等阿贝尔子群的融合
- 批准号:
2614232 - 财政年份:2021
- 资助金额:
$ 1.36万 - 项目类别:
Studentship
A study of cohomology of subgroups of the mapping class group and finite type invariants of homology three spheres
映射类群子群上同调及同调三球面有限型不变量的研究
- 批准号:
26800034 - 财政年份:2014
- 资助金额:
$ 1.36万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
- 批准号:
9970148 - 财政年份:1999
- 资助金额:
$ 1.36万 - 项目类别:
Standard Grant
Amalgam methods applied to the structure of the finite simple groups of characteristic 2 type
汞齐法在特征2型有限单群结构中的应用
- 批准号:
10640033 - 财政年份:1998
- 资助金额:
$ 1.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Subgroups and Representations of Algebraic Groups and Associated Finite Groups
代数群和相关有限群的子群和表示
- 批准号:
9610334 - 财政年份:1997
- 资助金额:
$ 1.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Finite Subgroups of Lie Groups and Automorphisms of Vertex Operator Algebras
数学科学:李群的有限子群和顶点算子代数的自同构
- 批准号:
9623038 - 财政年份:1996
- 资助金额:
$ 1.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Carter Subgroups and Characters of Finite Solvable Groups
数学科学:卡特子群和有限可解群的特征
- 批准号:
9109430 - 财政年份:1991
- 资助金额:
$ 1.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Maximal Subgroups of the Finite Groups of Lie Type and Associated Algebraic Groups
数学科学:李型有限群的极大子群及相关代数群
- 批准号:
8721879 - 财政年份:1988
- 资助金额:
$ 1.36万 - 项目类别:
Continuing Grant
The Structure of Maximal Subgroups of Finite Simple Groups
有限单群的极大子群的结构
- 批准号:
8002164 - 财政年份:1980
- 资助金额:
$ 1.36万 - 项目类别:
Standard Grant
Regional Conference on Factorizations in Local Subgroups of Finite Groups, Duluth, Minnesota, August 16-20, 1976
有限群局部子群因式分解区域会议,明尼苏达州德卢斯,1976 年 8 月 16-20 日
- 批准号:
7609520 - 财政年份:1976
- 资助金额:
$ 1.36万 - 项目类别:
Standard Grant