Quasinormal subgroups of finite p-groups

有限 p 群的拟正规子群

基本信息

  • 批准号:
    EP/E006299/1
  • 负责人:
  • 金额:
    $ 1.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Every finite group G is the product of its Sylow subgroups, one for each prime p dividing the order of G. These are the maximal subgroups of G of order a power of p. Finite groups are particularly well understood modulo their Sylow subgroups. For example, the simple groups (with no proper non-trivial normal subgroups) are all known; and there is a vast theory of soluble groups (i.e. those formed from abelian groups via extensions), where much detailed structure has been discovered. The same cannot be said of the p-groups themselves, however. A precise classification is out of the question and there are few deep theorems about them. (Though in recent years very striking progress has been made via pro-p-groups, proving the so-called Leedham-Green/Newman conjectures.) The project described here will investigate the quasinormal (qn for short) subgroups of an arbitrary finite p-group G. They form a significantly larger class than the normal subgroups of G, and the idea is to be able to say more about the structure of G in terms of its qn subgroups. A qn subgroup H possesses the symmetrical property of permuting under multiplication with every subgroup K, i.e. HK=KH. In fact the qns, not the normal subgroups, are precisely the ones that are invariant (as a set) under the symmetries of the group's lattice of subgroups. It is conjectured that qn subgroups are plentiful and that their situation within the containing group is of a regular and describable form.
每个有限群G都是它的Sylow子群的乘积,每个素数p都有一个Sylow子群来划分G的阶。这些都是最大的子群G的顺序幂p.有限群是特别好理解模他们的西洛子群。例如,单群(没有适当的非平凡正规子群)都是已知的;有一个庞大的可解群理论(即通过扩张从阿贝尔群形成的群),其中已经发现了许多详细的结构。然而,p-群本身却不能这么说。精确的分类是不可能的,关于它们也没有什么深刻的定理。(尽管近年来通过亲p团体取得了非常惊人的进展,证明了所谓的Leedham-Green/纽曼理论。本文研究了任意有限p-群G的拟正规(简称qn)子群。它们形成了一个比G的正规子群大得多的类,并且这个想法是能够用它的qn子群来更多地描述G的结构。一个qn子群H在与每个子群K的乘法下具有置换的对称性质,即HK=KH。事实上,qn(而不是正规子群)恰恰是在群的子群格的对称性下不变的(作为集合)。证明了qn子群是丰富的,并且它们在包含群中的位置是正则的和可描述的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stewart Stonehewer其他文献

Quasinormal subgroups of order p 2
  • DOI:
    10.1007/s11587-008-0029-6
  • 发表时间:
    2008-05-29
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    John Cossey;Stewart Stonehewer;Giovanni Zacher
  • 通讯作者:
    Giovanni Zacher
Abelian quasinormal subgroups of finite <em>p</em>-groups
  • DOI:
    10.1016/j.jalgebra.2010.03.007
  • 发表时间:
    2011-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    John Cossey;Stewart Stonehewer
  • 通讯作者:
    Stewart Stonehewer

Stewart Stonehewer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

on the fusion of elementary abelian subgroups of a finite p-group
关于有限 p 群的初等阿贝尔子群的融合
  • 批准号:
    2614232
  • 财政年份:
    2021
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Studentship
A study of cohomology of subgroups of the mapping class group and finite type invariants of homology three spheres
映射类群子群上同调及同调三球面有限型不变量的研究
  • 批准号:
    26800034
  • 财政年份:
    2014
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
  • 批准号:
    9970148
  • 财政年份:
    1999
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Amalgam methods applied to the structure of the finite simple groups of characteristic 2 type
汞齐法在特征2型有限单群结构中的应用
  • 批准号:
    10640033
  • 财政年份:
    1998
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subgroups and Representations of Algebraic Groups and Associated Finite Groups
代数群和相关有限群的子群和表示
  • 批准号:
    9610334
  • 财政年份:
    1997
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Finite Subgroups of Lie Groups and Automorphisms of Vertex Operator Algebras
数学科学:李群的有限子群和顶点算子代数的自同构
  • 批准号:
    9623038
  • 财政年份:
    1996
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Carter Subgroups and Characters of Finite Solvable Groups
数学科学:卡特子群和有限可解群的特征
  • 批准号:
    9109430
  • 财政年份:
    1991
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Maximal Subgroups of the Finite Groups of Lie Type and Associated Algebraic Groups
数学科学:李型有限群的极大子群及相关代数群
  • 批准号:
    8721879
  • 财政年份:
    1988
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Continuing Grant
The Structure of Maximal Subgroups of Finite Simple Groups
有限单群的极大子群的结构
  • 批准号:
    8002164
  • 财政年份:
    1980
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Regional Conference on Factorizations in Local Subgroups of Finite Groups, Duluth, Minnesota, August 16-20, 1976
有限群局部子群因式分解区域会议,明尼苏达州德卢斯,1976 年 8 月 16-20 日
  • 批准号:
    7609520
  • 财政年份:
    1976
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了