Predicting Drug Resistance in Cancer Genomes by DMA Methylation Profiling

通过 DMA 甲基化分析预测癌症基因组的耐药性

基本信息

  • 批准号:
    7557489
  • 负责人:
  • 金额:
    $ 43.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Ovarian cancer is the most lethal of all gynecological neoplasms. Although ovarian tumor resistance to chemotherapeutic drugs is a common problem, the underlying mechanisms of this multifactorial phenomenon remain poorly understood. While CpG island (CpGi) methylation likely plays a prominent role in the complexity of drug resistance in cancer, this has not been widely addressed in ovarian cancer, nor has the emerging phenomenon of acquired DNA methylation induced by cisplatin. We previously performed a genome-wide interrogation of CpGi loci in drug-resistant ovarian cancer and identified a subset of CpGi that were differentially hypermethylated in drug-resistant cell lines and relapse tumors and also were strongly correlated with shorter survival. Furthermore, within these loci, we identified conserved DNA sequences, characteristic of methylation-prone CpGi. We hypothesize that CpGi methylation is associated with cisplatin resistance. We will test this hypothesis by using models of ovarian cancer drug resistance and patient tumor samples. We will conduct computational modeling, using the drug-resistant, hypermethylated CpGi loci as our machine training set. An unsupervised learning scheme, specifically, a sequence clustering algorithm, will be used to classify CpGi sequences into groups of similar sequences. Patterns or subsequences in CpGi sequences will be used to further select methylation-prone CpGi sequences associated with drug-induced DNA methylation in ovarian cancer. The methylation-specific oligonucleotide (MSO) microarray method will be used to determine detailed methylation patterns of the CpGi loci in cisplatin-selected daughter ovarian cancer sublines, the drug-sensitive parental line, primary ovarian tumors taken before chemotherapy, and tumors obtained at relapse. Furthermore, the sequence prediction and MSO results will be evaluated directly, using a time-course methylation comparison between a drug-naive ovarian cancer cell line and the same cell line treated multiple times with cisplatin. We have designed this time-course experimental system to determine CpGi loci susceptible to drug-induced ate novo methylation and also to directly associate CpGi with the development of cisplatin resistance in ovarian cancer. To further confirm the roles of specific, implicated loci, we will use small interfering RNA technology to knock down such genes in drug sensitive cell lines and examine the subsequent effects on drug sensitivity. The results from the biological experiments will be analyzed using supervised or unsupervised learning methods. The computational analysis of experimental data will guide the reformulation of hypotheses. The entire procedure can be iterated to generate and refine mathematical models that predict drug-induced CpGi methylation and perhaps identify epigenetic relapse biomarkers in ovarian cancer.
卵巢癌是所有妇科肿瘤中最致命的。虽然卵巢肿瘤对化疗药物的耐药性是一个常见的问题,这种多因素现象的潜在机制仍然知之甚少。虽然CpG岛(CpG i)甲基化可能在癌症耐药的复杂性中起着重要作用,但这在卵巢癌中尚未得到广泛解决,顺铂诱导的获得性DNA甲基化的新现象也没有得到广泛解决。我们先前在耐药卵巢癌中对CpGi基因座进行了全基因组询问,并确定了一个CpGi亚组,该亚组在耐药细胞系和复发肿瘤中差异性高甲基化,并且与较短的生存期密切相关。此外,在这些基因座中,我们确定了保守的DNA序列,甲基化倾向的CpGi的特征。我们假设CpGi甲基化与顺铂耐药相关。我们将通过使用卵巢癌耐药模型和患者肿瘤样本来验证这一假设。我们将进行计算建模,使用耐药的高甲基化CpGi基因座作为我们的机器训练集。一个无监督的学习方案,具体地说,一个序列聚类算法,将被用来分类CpGi序列成组的相似序列。CpGi序列中的模式或顺序将用于进一步选择与卵巢癌中药物诱导的DNA甲基化相关的甲基化倾向CpGi序列。甲基化特异性寡核苷酸(MSO)微阵列方法将用于确定顺铂选择的子卵巢癌亚系、药物敏感的亲代系、化疗前的原发性卵巢肿瘤和复发时获得的肿瘤中CpGi基因座的详细甲基化模式。此外,序列预测和MSO结果将使用未用药卵巢癌细胞系和多次化疗处理的相同细胞系之间的时程甲基化比较来直接评估。 顺铂的时间。我们设计了这个时间过程的实验系统,以确定CpGi基因位点易受药物诱导的从头甲基化,并直接关联CpGi与卵巢癌顺铂耐药的发展。为了进一步确认特定的、相关的基因座的作用,我们将使用小干扰RNA技术敲除药物敏感细胞系中的这些基因,并检查随后对药物敏感性的影响。生物学实验的结果将使用监督或无监督学习方法进行分析。对实验数据的计算分析将指导假设的重新表述。整个过程可以迭代,以生成和完善数学模型,预测药物诱导的CpGi甲基化,并可能识别表观遗传复发生物标志物, 卵巢癌

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth P Nephew其他文献

RETRACTED ARTICLE: EGFR and MET receptor tyrosine kinase–altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers
撤回文章:EGFR 和 MET 受体酪氨酸激酶改变的微小 RNA 表达在肺癌中诱导肿瘤发生和吉非替尼耐药
  • DOI:
    10.1038/nm.2577
  • 发表时间:
    2011-12-11
  • 期刊:
  • 影响因子:
    50.000
  • 作者:
    Michela Garofalo;Giulia Romano;Gianpiero Di Leva;Gerard Nuovo;Young-Jun Jeon;Apollinaire Ngankeu;Jin Sun;Francesca Lovat;Hansjuerg Alder;Gerolama Condorelli;Jeffrey A Engelman;Mayumi Ono;Jin Kyung Rho;Luciano Cascione;Stefano Volinia;Kenneth P Nephew;Carlo M Croce
  • 通讯作者:
    Carlo M Croce

Kenneth P Nephew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth P Nephew', 18)}}的其他基金

Linking Epigenetic-Therapy Induction of Inflammasome Signaling to Generation of a BRCAness Phenotype
将表观遗传治疗诱导炎症体信号传导与 BRCAness 表型的生成联系起来
  • 批准号:
    10470367
  • 财政年份:
    2021
  • 资助金额:
    $ 43.33万
  • 项目类别:
Linking Epigenetic-Therapy Induction of Inflammasome Signaling to Generation of a BRCAness Phenotype
将表观遗传治疗诱导炎症体信号传导与 BRCAness 表型的生成联系起来
  • 批准号:
    10696171
  • 财政年份:
    2021
  • 资助金额:
    $ 43.33万
  • 项目类别:
Linking Epigenetic-Therapy Induction of Inflammasome Signaling to Generation of a BRCAness Phenotype
将表观遗传治疗诱导炎症体信号传导与 BRCAness 表型的生成联系起来
  • 批准号:
    10269645
  • 财政年份:
    2021
  • 资助金额:
    $ 43.33万
  • 项目类别:
Predicting Drug Resistance in Cancer Genomes by DMA Methylation Profiling
通过 DMA 甲基化分析预测癌症基因组的耐药性
  • 批准号:
    6993686
  • 财政年份:
    2004
  • 资助金额:
    $ 43.33万
  • 项目类别:
DNA Methylation and Ovarian Cancer
DNA 甲基化与卵巢癌
  • 批准号:
    7476148
  • 财政年份:
    2002
  • 资助金额:
    $ 43.33万
  • 项目类别:
DNA Methylation and Ovarian Cancer
DNA 甲基化与卵巢癌
  • 批准号:
    6908226
  • 财政年份:
    2002
  • 资助金额:
    $ 43.33万
  • 项目类别:
DNA Methylation and Ovarian Cancer
DNA 甲基化与卵巢癌
  • 批准号:
    7620464
  • 财政年份:
    2002
  • 资助金额:
    $ 43.33万
  • 项目类别:
DNA Methylation and Ovarian Cancer
DNA 甲基化与卵巢癌
  • 批准号:
    6607239
  • 财政年份:
    2002
  • 资助金额:
    $ 43.33万
  • 项目类别:
DNA Methylation and Ovarian Cancer
DNA 甲基化与卵巢癌
  • 批准号:
    8234867
  • 财政年份:
    2002
  • 资助金额:
    $ 43.33万
  • 项目类别:
DNA Methylation and Ovarian Cancer
DNA 甲基化与卵巢癌
  • 批准号:
    6545450
  • 财政年份:
    2002
  • 资助金额:
    $ 43.33万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了