Automated analysis of skeletal muscle fiber crossectional area and metabolic type
骨骼肌纤维横截面积和代谢类型的自动分析
基本信息
- 批准号:7481871
- 负责人:
- 金额:$ 15.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-07 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAgricultureAlgorithmsAntibodiesAreaAtrophicBiological AssayBiologyBiomedical ResearchBusinessesCell membraneCellsCharacteristicsCollaborationsCommunitiesCompatibleComputer softwareComputersCultured CellsDevelopmentDiabetic DietDiseaseEffectivenessExerciseExercise PhysiologyExtracellular MatrixExtracellular Matrix ProteinsFamily suidaeFiberGene ExpressionGoalsGrantHealthHindlimbImageImage AnalysisIndianaInterventionJavaKnockout MiceLabelLamininLeadMetabolicMethodologyMethodsMorphologyMusMuscleMuscle CellsMuscle FibersMuscle denervation procedureMuscular DystrophiesMyopathyMyosin ATPaseMyosin Type IObesityPatternPhasePhysiologyPrincipal InvestigatorProteinsPurposeRattusReagentResearchResearch PersonnelSamplingScienceSkeletal MuscleSliceSmall Business Technology Transfer ResearchSpace FlightSpeedStaining methodStainsSuperoxide DismutaseSus scrofaTechniquesTimeTissue SampleTissuesTravelUniversitiesWorkbasecomputer programdesigndesireimage processingindexinginterestmedical schoolsmuscle regenerationnutritionprogramsprotein expressionsize
项目摘要
DESCRIPTION (provided by applicant):
The accurate quantification of skeletal muscle morphology is desired by researcher investigating a wide variety of health issues such as aging, muscle denervation, muscle regeneration, muscular dystrophy, exercise physiology, nutrition, and space flight. For such studies, tissue sections prepared from skeletal muscle samples are fixed, stained to visualize the borders of the muscle fibers, and digitally photographed. Investigators then use laborious time-consuming techniques to trace the outline of muscle fibers within each image to calculate the cross-sectional area of the fibers, a parameter of high interest to the research community. The goal of this Phase I STTR proposal is to develop staining and software methods to quantify muscle fiber cross sectional area and metabolic fiber type of skeletal muscle fibers in a semi- automated quantitative fashion. In previous work Vala Sciences Inc has developed a software program that automatically recognizes and outlines cell borders in images obtained from confluent cultured cells. Working in collaboration with Dr. Tatiana Kostrominova of Indiana University School of Medicine Northwest, we plan to modify our software so that it performs accurately with samples from tissue sections obtained from skeletal muscle. This will involve identifying the appropriate labeling reagents that yield the optimal outline of the muscle fibers and modifying our existing software so that it accurately identifies the muscle fiber boundaries. Furthermore, we will label the tissue sections for myosin type I (slow fiber type), and develop the methodology to quantify the percentage of slow fibers within each tissue in a semi-automated fashion. The research will enable development of reagent and software kits for use with skeletal muscle, which will greatly increase the accuracy and speed with such samples can be analyzed for morphology and gene expression. The kits and software will be of high interest among researchers wishing to quantify the effects of various experimental interventions in altering muscle physiology and health. Narrative: We propose to develop a technique to analyze, in an automated fashion, the size and metabolic characteristics of muscle cells within slices of tissue obtained from skeletal muscle, which is an important determination in studies of exercise, muscular dystrophy, and related health issues. Currently, techniques to do this are very time consuming and laborious. The proposed research will enable development of a Windows-compatible computer program for automatically analyzing images derived from these samples, greatly increasing the throughput of the assay, which will facilitate biomedical research into developing cures for muscle disorders and other diseases.
描述(由申请人提供):
骨骼肌形态的精确量化是研究人员研究各种健康问题所期望的,这些健康问题诸如衰老、肌肉去神经支配、肌肉再生、肌肉营养不良、运动生理学、营养和太空飞行。对于这样的研究,将从骨骼肌样品制备的组织切片固定,染色以使肌纤维的边界可视化,并数码拍照。然后,研究人员使用费力耗时的技术来跟踪每个图像中的肌纤维轮廓,以计算纤维的横截面积,这是研究界非常感兴趣的参数。该I期STTR提案的目标是开发染色和软件方法,以半自动定量方式定量骨骼肌纤维的肌纤维横截面积和代谢纤维类型。在以前的工作中,Vala Sciences Inc开发了一种软件程序,可以自动识别并勾勒出从融合培养细胞获得的图像中的细胞边界。我们与印第安纳州大学西北医学院的Tatiana Kostrominova博士合作,计划修改我们的软件,使其能够准确地处理骨骼肌组织切片样本。这将涉及确定产生最佳肌纤维轮廓的适当标记试剂,并修改我们现有的软件,以便准确识别肌纤维边界。此外,我们将标记肌球蛋白I型(慢纤维型)的组织切片,并开发以半自动方式定量每个组织中慢纤维百分比的方法。该研究将能够开发用于骨骼肌的试剂和软件包,这将大大提高对这些样本进行形态学和基因表达分析的准确性和速度。这些工具包和软件将引起希望量化各种实验干预措施在改变肌肉生理和健康方面的影响的研究人员的高度兴趣。叙述:我们建议开发一种技术,以自动化的方式分析从骨骼肌获得的组织切片内的肌细胞的大小和代谢特征,这是运动、肌肉萎缩症和相关健康问题研究中的重要决定。目前,这样做的技术非常耗时费力。拟议的研究将能够开发一种Windows兼容的计算机程序,用于自动分析来自这些样本的图像,大大提高了检测的吞吐量,这将有助于生物医学研究开发肌肉疾病和其他疾病的治疗方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Application of WGA lectin staining for visualization of the connective tissue in skeletal muscle, bone, and ligament/tendon studies.
- DOI:10.1002/jemt.20865
- 发表时间:2011-01
- 期刊:
- 影响因子:2.5
- 作者:Kostrominova, Tatiana Y.
- 通讯作者:Kostrominova, Tatiana Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK M MCDONOUGH其他文献
PATRICK M MCDONOUGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK M MCDONOUGH', 18)}}的其他基金
The Pain in a Dish Assay (PIDA): a high throughput system featuring human stem cell-derived nociceptors and dorsal horn neurons to test compounds for analgesic activity
皿中疼痛测定 (PIDA):一种高通量系统,具有人类干细胞来源的伤害感受器和背角神经元,用于测试化合物的镇痛活性
- 批准号:
10759735 - 财政年份:2023
- 资助金额:
$ 15.39万 - 项目类别:
The hCNS-HIV/ARV assay system, a platform utilizing human iPSC-neurons/-microglia/-astrocytes to test HIV/AIDS therapeutics for neurotoxicity related to HIV-associated cognitive disroder (HAND)
hCNS-HIV/ARV 检测系统是一个利用人类 iPSC-神经元/-小胶质细胞/-星形胶质细胞来测试 HIV/AIDS 疗法与 HIV 相关认知障碍 (HAND) 相关神经毒性的平台
- 批准号:
10259617 - 财政年份:2018
- 资助金额:
$ 15.39万 - 项目类别:
The hCNS-HIV/ARV assay system, a platform utilizing human iPSC-neurons/-microglia/-astrocytes to test HIV/AIDS therapeutics for neurotoxicity related to HIV-associated cognitive disroder (HAND)
hCNS-HIV/ARV 检测系统是一个利用人类 iPSC-神经元/-小胶质细胞/-星形胶质细胞来测试 HIV/AIDS 疗法与 HIV 相关认知障碍 (HAND) 相关神经毒性的平台
- 批准号:
10397158 - 财政年份:2018
- 资助金额:
$ 15.39万 - 项目类别:
The Alzheimer's Therapeutics Screening Assay: a high-throughput drug-discovery platform utilizing neurons and microglia derived from human induced pluripotent stem cells and Kinetic Image Cytometry
阿尔茨海默病治疗筛选试验:利用源自人类诱导多能干细胞的神经元和小胶质细胞和动态图像细胞计数的高通量药物发现平台
- 批准号:
9681359 - 财政年份:2018
- 资助金额:
$ 15.39万 - 项目类别:
Assay of chemicals for Parkinson’s toxicity in human iPSC-derived neurons
化学物质对人类 iPSC 衍生神经元帕金森毒性的测定
- 批准号:
9020156 - 财政年份:2015
- 资助金额:
$ 15.39万 - 项目类别:
A High Throughput Assay for Neural Crest Cell Migration & Toxicity
神经嵴细胞迁移的高通量测定
- 批准号:
8929396 - 财政年份:2014
- 资助金额:
$ 15.39万 - 项目类别:
IN VITRO ASSAY OF THE INITIATION OF BREAST CANCER METASTASIS
乳腺癌转移起始的体外测定
- 批准号:
8937353 - 财政年份:2014
- 资助金额:
$ 15.39万 - 项目类别:
Kinetic image cytometry assays for neuronal activity/toxicity
神经元活性/毒性的动力学图像细胞计数分析
- 批准号:
8525016 - 财政年份:2013
- 资助金额:
$ 15.39万 - 项目类别:
Kinetic image cytometry assays for neuronal activity/toxicity
神经元活性/毒性的动力学图像细胞计数分析
- 批准号:
8927098 - 财政年份:2013
- 资助金额:
$ 15.39万 - 项目类别:
Stem cell toxicology assays for cardiac differentiation
心脏分化的干细胞毒理学测定
- 批准号:
8620564 - 财政年份:2013
- 资助金额:
$ 15.39万 - 项目类别:
相似海外基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Cooperative Agreement
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
EU-Funded
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Research Grant














{{item.name}}会员




