High Throughput web-base Image Analysis of Mouse Brain MR Imaging Studies
小鼠脑 MR 成像研究的高通量网络图像分析
基本信息
- 批准号:7446753
- 负责人:
- 金额:$ 19.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-15 至 2009-07-01
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAmygdaloid structureAnimal ModelAnimalsArchivesAtlasesAutistic DisorderBackBehavioralBrainBrain regionCaliforniaCerebellumClassificationClientClinicalComputer softwareComputing MethodologiesCorpus striatum structureDataData CollectionData SetDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDocumentationElectronic MailEnvironmentFMR1Fragile X SyndromeGenerationsGeneric DrugsGeneticGenetic screening methodGenotypeGraphHippocampus (Brain)HumanImageImage AnalysisImageryInformation SystemsInstitutesInternetKnock-outMRI ScansMagnetic Resonance ImagingManualsMeasuresMental disordersMethodsModalityModelingMolecularMorphologyMusNatureNeuroanatomyNumbersOnline SystemsOutcomePathologyPatientsPharmaceutical PreparationsPhasePhenotypePopulationPopulation StudyProcessProtocols documentationPsychiatryPublicationsPublishingQuality ControlRattusReproducibilityResearchResearch InfrastructureResearch PersonnelResolutionResourcesRiskRunningScanningSchizophreniaShapesSideSliceSlideSpecific qualifier valueStandards of Weights and MeasuresSystemTechniquesTechnologyTectum MesencephaliTestingTimeTissuesValidationVariantbasebrain morphologycluster computingcompliance behaviorcomputerized data processingcostimage processinginterestmorphometrymouse modelsizesuccessweb based interfaceweb interface
项目摘要
DESCRIPTION (provided by applicant): In the last decade, MRI studies of human brain morphometry have been used to investigate a multitude of pathologies and drug-related effects in psychiatric research. The morphometric measures that differentiate patient populations or track longitudinal changes are often subtle and require a large number of subjects or repeated studies to detect and statistically model with significance. Cost, patient compliance, risks to the patients, and the rarity of certain diseases often limit traditional, clinical morphometric studies. These complications have motivated the use of model organisms such as of mice and rats. Animal studies are also very popular due to their small size and rapid development cycle, the wealth of genotype and phenotype data, as well as the maturity of the technology to manipulate their genetic information to induce disease. Brain morphometry models of rat and mice typically involve histological slides, behavioral data, genetic testing, and, increasingly, MRI scans. In particular, in addition to brain morphometry, MRI scans are being employed as a hypothesis generation method for focused histological and molecular examinations, and for strain comparisons. Effective methods have been developed for extracting brain morphometry from human MRI scans. We are leaders in the field for their development and their application. We have developed Legrendre polynomial methods for MRI bias correction methods, atlas-based methods for tissue classification, and spherical harmonics techniques for shape parameterization. We have applied these methods to correlate hippocampus shape variations that distinguish patients suffering from schizophrenia. By contrast, few automated quantitative analysis methods exist for small animal MRI. The standard is to manually outline brain features in MRI slices for a large number of animals, and such manual methods lack reproducibility and are extremely time consuming. The lack of automated MRI analysis methods is the limiting factor in many animal studies. We propose to develop automatic, reliable, high-throughput MR image analysis methods for small animal, brain morphometry studies. Additionally, we propose to develop an intuitive web-based interface for collecting and distributing the imaging data of small animal studies as well as initiating the processing of that data on a distributed processing network. The web-based data sharing and processing system also supports the inspection of the ongoing processing and the examination of the computed results. This web-based processing system is generic in nature and can be extended to host and process human MRI data as well as data from other modalities and other applications. To demonstrate and evaluate the data system, we will apply it to the study of the neuroanatomy of a fragile-X syndrome mouse model. This mouse model Is based on a knockout of the FMR1 mouse model, and it has shown behavioral deficits consistent with a Fragile X/autism human phenotype. The proposed software will advance murine MRI studies of morphometry and connectivity for neuro-developmental, and neuro-degenerative psychiatry diseases. The analysis of MR images of entire brain studies will become the matter of a few mouseclicks on a web-interface.
描述(由申请人提供):在过去的十年中,人脑形态测量的 MRI 研究已被用于调查精神病学研究中的多种病理学和药物相关效应。区分患者群体或跟踪纵向变化的形态测量通常很微妙,需要大量受试者或重复研究才能检测和建立有意义的统计模型。成本、患者依从性、患者风险以及某些疾病的罕见性常常限制传统的临床形态测量研究。这些并发症促使人们使用模型生物,例如小鼠和大鼠。动物研究也因其规模小、开发周期快、基因型和表型数据丰富、以及操纵其遗传信息诱发疾病的技术成熟而非常受欢迎。大鼠和小鼠的脑形态测量模型通常涉及组织学切片、行为数据、基因测试以及越来越多的 MRI 扫描。特别是,除了脑形态测量之外,MRI 扫描还被用作假设生成方法,用于集中组织学和分子检查以及应变比较。已经开发出了从人体 MRI 扫描中提取大脑形态测量的有效方法。我们是其开发和应用领域的领导者。我们开发了用于 MRI 偏差校正方法的 Legrendre 多项式方法、用于组织分类的基于图谱的方法以及用于形状参数化的球谐函数技术。我们应用这些方法来关联海马形状变化,以区分患有精神分裂症的患者。相比之下,小动物 MRI 的自动定量分析方法很少。标准是在大量动物的 MRI 切片中手动勾画出大脑特征,这种手动方法缺乏重复性并且极其耗时。缺乏自动化 MRI 分析方法是许多动物研究的限制因素。我们建议开发自动、可靠、高通量的 MR 图像分析方法,用于小动物、大脑形态测量研究。此外,我们建议开发一个直观的基于网络的界面,用于收集和分发小动物研究的成像数据,并在分布式处理网络上启动该数据的处理。基于网络的数据共享和处理系统还支持对正在进行的处理的检查和对计算结果的检查。这种基于网络的处理系统本质上是通用的,可以扩展到托管和处理人体 MRI 数据以及来自其他模式和其他应用程序的数据。为了演示和评估该数据系统,我们将其应用于脆性 X 综合征小鼠模型的神经解剖学研究。该小鼠模型基于 FMR1 小鼠模型的敲除,并且表现出与脆性 X 病/自闭症人类表型一致的行为缺陷。拟议的软件将推进小鼠 MRI 对神经发育和神经退行性精神疾病的形态测量和连接的研究。对整个大脑研究的 MR 图像进行分析将只需在网络界面上点击几下鼠标即可。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Atlas based Mouse Brain Segmentation.
- DOI:10.1117/12.812762
- 发表时间:2009-02-01
- 期刊:
- 影响因子:0
- 作者:Lee J;Jomier J;Aylward S;Tyszka M;Moy S;Lauder J;Styner M
- 通讯作者:Styner M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Andreas Styner其他文献
Martin Andreas Styner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Andreas Styner', 18)}}的其他基金
Longitudinal Analysis of the Dynamic Network Disruptions in Alzheimer's Disease
阿尔茨海默病动态网络中断的纵向分析
- 批准号:
9508126 - 财政年份:2018
- 资助金额:
$ 19.98万 - 项目类别:
International Conference on Information Processing in Medical Imaging (IPMI)
国际医学影像信息处理会议 (IPMI)
- 批准号:
9331007 - 财政年份:2017
- 资助金额:
$ 19.98万 - 项目类别:
High Throughput web-base Image Analysis of Mouse Brain MR Imaging Studies
小鼠脑 MR 成像研究的高通量网络图像分析
- 批准号:
7272126 - 财政年份:2007
- 资助金额:
$ 19.98万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant