Ensemble Classifier Design applied to face expression classification

集成分类器设计应用于人脸表情分类

基本信息

  • 批准号:
    EP/E061664/1
  • 负责人:
  • 金额:
    $ 35.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Pattern classification involves assignment of an object to one of several pre-specified categories or classes, and is a key component in many data interpretation activities. The proposed approach focuses on classifiers that learn from examples, and it is assumed that each example pattern is represented by a set of numbers, which are known as the pattern features. In the case of face expression classification (for example distinguish between a smiling and frowning face), these features could consist of numbers representing different aspects of facial features. In order to design a system it is customary to divide the example patterns into two sets, a training set to design the classifier and a test set which is subsequently used to predict the performance when previously unseen examples are applied. A problem arises when there are many features and relatively few examples, and the classifier can learn the training set too well, known as over-fitting so that performance on the test set decreases. The field of ensemble classifiers has been developed to address the problem of achieving the best pattern classification performance using a combination of relatively simple classifiers. It has been found that the combination has the advantage that it is less likely to over-fit. However, there is still the difficulty of tuning the individual classifiers, a process that is normally performed using classifier parameters (for example complexity of a neural network classifier). The common approach is to further divide the training set to produce a validation set that can be used to adjust appropriate parameters. However, when the number of examples is in short supply theses techniques are either inappropriate or very time-consuming.In recent work, the Principal Investigator has developed an ensemble class separability measure that is computed on the training set and that can detect over-fitting. Therefore there is no need for a validation set, thereby making more data available for training. The project proposal is to test the method on real data and confirm the results that have been obtained previously on benchmark data.The technique was proposed for two-class problems, and the proposal is to develop the method for multi-class problems using Error-Correcting-Output-Coding (ECOC). ECOC is an ensemble technique that works by decomposing a multiclass problem into two-class sub-problems. In this proposal the aim is to understand why the technique works well, and to propose a design methodology with the aim of applying it to problems in face expression classification. A further objective is to apply the method to predicting the optimal number of features in feature selection using only the training set. There has been for many years a great deal of effort in discovering the most relevant features, since the result has been shown to be more accurate and efficient classifers. Some early research indicates that using class separability measure, this is a feasible approach. The problem is particulary challenging when there are hudreds or thousands of features,as there are in certain biometric, bio-informatics and data mining applications.It is known that even a small improvement in performance of a pattern classification system can affect commercial viability, and the successful outcome of the project should impact other biometric, bio-informatics and data mining applications. The proposed research is relevant to the EPSRC mission since it is aimed at advancing knowledge and technology with practical application relevance. It is anticipated that the likely result of this research will be the enhancement of UK competitiveness through exploitation of the technology.With the help of project partner Mitsubishi Electric, the developed techniques will be applied to stress analysis for physical security systems and driver fatigue for automotive applications.
模式分类涉及将对象分配到几个预先指定的类别或类中的一个,并且是许多数据解释活动中的关键组成部分。所提出的方法侧重于从示例中学习的分类器,并且假设每个示例模式由一组数字表示,这些数字被称为模式特征。在面部表情分类的情况下(例如区分微笑和皱眉的面部),这些特征可以由表示面部特征的不同方面的数字组成。为了设计一个系统,通常将示例模式分为两组,一组是用于设计分类器的训练集,另一组是随后用于预测应用先前未见过的示例时的性能的测试集。当有许多特征和相对较少的示例时,就会出现问题,并且分类器可以很好地学习训练集,称为过度拟合,从而降低测试集的性能。集成分类器的领域已经被开发来解决使用相对简单的分类器的组合来实现最佳模式分类性能的问题。已经发现,该组合具有不太可能过拟合的优点。然而,仍然存在调整各个分类器的困难,这是一个通常使用分类器参数(例如神经网络分类器的复杂性)执行的过程。常见的方法是进一步划分训练集以产生可用于调整适当参数的验证集。然而,当样本数量不足时,这些技术要么不合适,要么非常耗时。在最近的工作中,首席研究员开发了一种在训练集上计算的集成类可分性度量,可以检测过拟合。因此,不需要验证集,从而使更多的数据可用于训练。该项目的建议是测试的方法对真实的数据和确认的结果,已经获得了基准data.The技术提出了两类问题,并建议是开发的方法,多类问题使用纠错输出编码(ECOC)。ECOC是一种集成技术,它通过将多类问题分解为两类子问题来工作。在这个建议的目的是了解为什么这项技术工作良好,并提出了一个设计方法,其目的是将其应用到人脸表情分类的问题。另一个目的是应用该方法来预测的最佳数量的特征选择,仅使用训练集的功能。多年来,人们一直在努力发现最相关的特征,因为结果已被证明是更准确和有效的分类器。一些早期的研究表明,使用类可分性度量,这是一种可行的方法。这个问题是特别具有挑战性的,当有人类或数以千计的功能,因为有在某些生物识别,生物信息学和数据挖掘应用程序。众所周知,即使是一个小的改进,在性能的模式分类系统可以影响商业可行性,该项目的成功结果应该影响其他生物识别,生物信息学和数据挖掘应用。拟议的研究是相关的EPSRC的使命,因为它的目的是推进知识和技术与实际应用的相关性。预计这项研究的可能结果将是通过利用该技术提高英国的竞争力。在项目合作伙伴三菱电机的帮助下,开发的技术将应用于物理安全系统的应力分析和汽车应用的驾驶员疲劳。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, SSPR&SPR 2012, Hiroshima, Japan, November 7-9, 2012. Proceedings
结构、句法和统计模式识别 - IAPR 国际联合研讨会、SSPR
  • DOI:
    10.1007/978-3-642-34166-3_77
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Windeatt T
  • 通讯作者:
    Windeatt T
Pruning of Error Correcting Output Codes by optimization of accuracy-diversity trade off
  • DOI:
    10.1007/s10994-014-5477-5
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Ozogur-Akyuz, Sureyya;Windeatt, Terry;Smith, Raymond
  • 通讯作者:
    Smith, Raymond
Facial action unit recognition using multi-class classification
  • DOI:
    10.1016/j.neucom.2014.07.066
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Raymond S. Smith;T. Windeatt
  • 通讯作者:
    Raymond S. Smith;T. Windeatt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terry Windeatt其他文献

Terry Windeatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Exemplar-Classifier思想的高分辨率光学遥感影像目标识别研究
  • 批准号:
    41301361
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Zero-User-Adjustment Learning Classifier System for Optimal Performance
零用户调整学习分类器系统以获得最佳性能
  • 批准号:
    23KJ0993
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Linguistic Relativity in Acquisition and Processing of Number Concepts: A View from Classifier Languages
数字概念习得和处理中的语言相对论:分类语言的视角
  • 批准号:
    23K17272
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Validation of a novel biomarker classifier that predicts radiation response following breast-conserving surgery for ductal carcinoma in situ (DCIS)
验证一种新型生物标志物分类器,可预测导管原位癌 (DCIS) 保乳手术后的放射反应
  • 批准号:
    470541
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Operating Grants
Improving Canadian Lung Cancer Screening Efficiency with a Computed Tomography Risk Classifier
使用计算机断层扫描风险分类器提高加拿大肺癌筛查效率
  • 批准号:
    469495
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Operating Grants
Quantitative imaging phenotypic classifier for distinguishing radiation effects from tumor recurrence in Glioblastoma
用于区分胶质母细胞瘤的放射效应和肿瘤复发的定量成像表型分类器
  • 批准号:
    10778776
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
Hardware-Accelerated Implementation of a Neural Pathway Classifier on Ultra-low-power FPGA
在超低功耗 FPGA 上硬件加速实现神经通路分类器
  • 批准号:
    572677-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Quantitative imaging phenotypic classifier for distinguishing radiation effects from tumor recurrence in Glioblastoma .
用于区分胶质母细胞瘤的放射效应和肿瘤复发的定量成像表型分类器。
  • 批准号:
    10375650
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
Establishment and validation of a comprehensive non-invasive CNS tumor classifier and biomarker through circulating cell-free DNA analysis
通过循环游离DNA分析建立和验证综合性非侵入性中枢神经系统肿瘤分类器和生物标志物
  • 批准号:
    475624
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Studentship Programs
Quantitative imaging phenotypic classifier for distinguishing radiation effects from tumor recurrence in Glioblastoma
用于区分胶质母细胞瘤的放射效应和肿瘤复发的定量成像表型分类器
  • 批准号:
    10656165
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
Comprehensive Proteomic Classifier for the Molecular Characterization of Pulmonary Sarcoidosis
用于肺结节病分子特征的综合蛋白质组学分类器
  • 批准号:
    10462698
  • 财政年份:
    2021
  • 资助金额:
    $ 35.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了