Semiconducting and superconducting nano-devices to control terahertz radiation: emitters, filters, detectors, amplifiers and lenses.
用于控制太赫兹辐射的半导体和超导纳米器件:发射器、滤波器、探测器、放大器和透镜。
基本信息
- 批准号:EP/F005482/1
- 负责人:
- 金额:$ 38.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Practically all electromagnetic radiation is heavily used by humankind. However there is a radiation with one range of frequencies which is still not used. This is so-called terahertz (THz) range and the associated problem is called the terahertz gap. The recent growing interest in THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. The THz gap is difficult to bridge by either electronic or optical devices and it covers temperatures of biological processes and a substantial fraction of the luminosity remnant from the Big Bang due to the red shift falls into the THz gap. The problem exists because there are no practical sources, filters or receivers of electromagnetic radiation with frequencies in the THz range. Why is THz radiation (T rays) so important? T- rays may penetrate bodies but, in contrast with X-rays, leave no damage. The spectrum of T-rays penetration and absorption is frequency and material dependent. In a frequency range of a few THz the penetration depths through aqueous solutions is very limited, while plastic materials are practically transparent. If tunable and powerful sources and receivers of such radiation are produced everything can be scanned continuously. This would then initiate a new stage in medicine (cancer and other diseases could be detected and removed at a very early stage) and in the war against terrorism. Nanostructure-based THz-electronics may give many promising applications, ie in ultra-high bandwidth wireless communication networks, vehicle control, atmospheric pollution monitoring, inter-satellite communication and spectroscopy, to name a few. We anticipate that our proposal will be an important step in removing the technological Terahertz gap''.The focus of our research are THz emitters, filters, detectors, lenses and amplifiers based on metamaterial and semiconductor superlattices (M-SSL) and layered superconductors (LSC) with spatially modulated properties. The SSL can be used as a generator of THz radiation (T-rays). This is based on the phenomenon of Bloch oscillations, which have now been observed in many experiments with SSL. Most importantly the frequency of such electronic oscillations belongs to the THz range. Metamaterial superlattices (MSL) represent a new form of matter discovered recently by John Pendry et al and anticipated by Veselago where electromagnetic radiation of a very broad spectrum may be controlled, generated and trapped. Our preliminary estimations indicate that metamaterials where refractive index and permeability are negative are ideal to be used in the THz devices. Moreover the motion of Josephson vortices in the LSC may also generate T-rays. In a more simple form T-rays arise, when the speed of the Josephson vortices exceeds the THz light speed in superconductors. This will be simply Cherenkov radiation.Thus we propose to build various devices for the use of THz radiation such as THz emitters, filters, detectors, lenses and amplifiers using nonlinear and quantum effects existing in M-SSL and LSC. The first idea is to use unique properties of SSL as a transformer of the microwaves with gigahertz frequencies into radiation with THz frequency and vice versa. We propose to put SSL in a microwave resonator and investigate such a device as a possible source for THz radiation. In the second idea we will design metamaterials(MSL) to trap, to detect and to control THz radiation. In the third idea we will use the LSC which consists of thin superconducting layers separated by very thin insulating layers. There are natural LSC, such as, high temperature superconductors (HTSC) or they can be made artificially from superconducting and insulating materials, like SSL. There is a whole area of LSC engineering
几乎所有的电磁辐射都被人类大量使用。然而,有一种具有一个频率范围的辐射仍然没有使用。这就是所谓的太赫兹(THz)范围,相关的问题称为太赫兹间隙。太赫兹辐射在物理、天文、化学、生物和医学等领域有着重要的应用,包括太赫兹成像、光谱学、断层成像、医学诊断、健康监测、环境控制以及化学和生物识别等。太赫兹间隙很难通过电子或光学设备来桥接,它覆盖了生物过程的温度,并且由于红移福尔斯而导致的大爆炸的亮度残余的相当大一部分落入太赫兹间隙。问题的存在是因为没有实际的频率在太赫兹范围内的电磁辐射源、滤波器或接收器。为什么太赫兹辐射(T射线)如此重要?T射线可以穿透人体,但与X射线不同,它不会留下任何损伤。T射线穿透和吸收的光谱取决于频率和材料。在几THz的频率范围内,通过水溶液的穿透深度非常有限,而塑料材料实际上是透明的。如果能制造出可调谐的、强大的辐射源和接收器,一切都可以被连续扫描。这将开启医学的新阶段(癌症和其他疾病可以在早期阶段被发现和消除)和反恐战争。基于纳米结构的太赫兹电子学可以给出许多有前途的应用,即在超高带宽无线通信网络、车辆控制、大气污染监测、卫星间通信和光谱学中,仅举几例。我们的研究重点是基于超材料和半导体超晶格(M-SSL)以及具有空间调制特性的层状超导体(LSC)的太赫兹发射器、滤波器、探测器、透镜和放大器。SSL可以用作THz辐射(T射线)的发生器。这是基于布洛赫振荡现象,现在已经在许多SSL实验中观察到。最重要的是,这种电子振荡的频率属于THz范围。超材料超晶格(MSL)代表了John Pendry等人最近发现并由Veselago预期的一种新形式的物质,其中可以控制,产生和捕获非常宽光谱的电磁辐射。我们的初步估计表明,超材料的折射率和磁导率为负是理想的,用于太赫兹器件。此外,LSC中约瑟夫森涡旋的运动也可以产生T射线。在一个更简单的形式中,当约瑟夫森涡旋的速度超过超导体中的太赫兹光速时,T射线就会出现。因此,我们提出利用M-SSL和LSC中存在的非线性和量子效应来构建各种THz辐射器件,如THz发射器、滤波器、探测器、透镜和放大器。第一个想法是使用SSL的独特属性作为具有千兆赫频率的微波到具有太赫兹频率的辐射的Transformer,反之亦然。我们建议把SSL在微波谐振器和调查这样的设备作为一个可能的太赫兹辐射源。在第二个想法中,我们将设计超材料(MSL)来捕获,检测和控制太赫兹辐射。在第三个想法中,我们将使用由非常薄的绝缘层分隔的薄超导层组成的LSC。有天然的LSC,如高温超导体(HTSC),或者它们可以由超导和绝缘材料人工制成,如SSL。LSC工程的整个领域
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chirality tunneling and quantum dynamics for domain walls in mesoscopic ferromagnets
介观铁磁体中畴壁的手性隧道和量子动力学
- DOI:10.1103/physrevb.77.134425
- 发表时间:2008
- 期刊:
- 影响因子:3.7
- 作者:Galkina E
- 通讯作者:Galkina E
Drastic change of the Casimir force at the metal-insulator transition
金属-绝缘体转变时卡西米尔力的剧烈变化
- DOI:10.1103/physrevb.80.125119
- 发表时间:2009
- 期刊:
- 影响因子:3.7
- 作者:Galkina E
- 通讯作者:Galkina E
Electron-beam instability in left-handed media.
- DOI:10.1103/physrevlett.100.244803
- 发表时间:2008-04
- 期刊:
- 影响因子:8.6
- 作者:Y. Bliokh;S. Savel’ev;F. Nori
- 通讯作者:Y. Bliokh;S. Savel’ev;F. Nori
Unusual Resonators: Plasmonics, Metamaterials, and Random Media
不寻常的谐振器:等离激元、超材料和随机介质
- DOI:10.48550/arxiv.0708.2653
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Bliokh K
- 通讯作者:Bliokh K
Geometric Stochastic Resonance
- DOI:10.1103/physrevlett.104.020601
- 发表时间:2010-01-15
- 期刊:
- 影响因子:8.6
- 作者:Ghosh, Pulak Kumar;Marchesoni, Fabio;Nori, Franco
- 通讯作者:Nori, Franco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feo Kusmartsev其他文献
Feo Kusmartsev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feo Kusmartsev', 18)}}的其他基金
Practical Sound Attenuation using Broad Band Sound Attenuating Devices
使用宽带声音衰减装置进行实用声音衰减
- 批准号:
EP/I029001/1 - 财政年份:2011
- 资助金额:
$ 38.53万 - 项目类别:
Research Grant
相似海外基金
A scalable superconducting dual-shielded fetal magnetocardiography system
可扩展的超导双屏蔽胎儿心磁图系统
- 批准号:
10615914 - 财政年份:2022
- 资助金额:
$ 38.53万 - 项目类别:
Growth and superconducting properties of (RE)Ba2Cu3O7-d single grain superconductors containing nano-size dopants
含纳米掺杂剂的(RE)Ba2Cu3O7-d单晶超导体的生长和超导性能
- 批准号:
2436322 - 财政年份:2020
- 资助金额:
$ 38.53万 - 项目类别:
Studentship
Innovation of advanced functional high-Tc superconducting thin films by using discontinuous nano-scale linear defects
利用不连续纳米级线性缺陷创新先进功能高温超导薄膜
- 批准号:
19K04474 - 财政年份:2019
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-resolution micro-magnetometer based on novel nano-junction oxide SQUIDs
基于新型纳米结氧化物SQUID的高分辨率微磁力计
- 批准号:
9789871 - 财政年份:2016
- 资助金额:
$ 38.53万 - 项目类别:
Research on quantum current standards with superconducting nano-structure
超导纳米结构量子电流标准研究
- 批准号:
25871198 - 财政年份:2013
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nano engineering of superconducting thin films with high-performance by chemical doping of APC and controlling of the crystallization
APC化学掺杂及结晶控制高性能超导薄膜纳米工程
- 批准号:
25390054 - 财政年份:2013
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface nano-fabrication of thin-film crystals of high-Tc superconductors and controls of the superconducting properties
高温超导薄膜晶体的表面纳米加工及超导性能控制
- 批准号:
24560021 - 财政年份:2012
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of ultra-fast superconducting nano-strip particle detector with charge discrimination
具有电荷甄别功能的超快超导纳米带粒子探测器的研制
- 批准号:
24619013 - 财政年份:2012
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of critical current properties for nano-defects-doped high-Tc superconducting films by controlling charier density
通过控制载流子密度改善纳米缺陷掺杂高Tc超导薄膜的临界电流性能
- 批准号:
23760020 - 财政年份:2011
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Quantum information processing using superconducting qubits
使用超导量子位的量子信息处理
- 批准号:
22224007 - 财政年份:2010
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




