Development of Parallel Search Algorithms
并行搜索算法的开发
基本信息
- 批准号:EP/F01130X/1
- 负责人:
- 金额:$ 18.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many computational tools in the materials and chemistry discipline make use of geometry optimisation techniques, often minimisation of the energy with respect to the atomic positions to find equilibrium structures, or saddle points on the potential energy surface to locate transition states for a chemical reaction. Traditionally these stationary points are found by performing energy and force calculation at an initial, guessed geometry and then approaching the stationary point by successive, sequentially calculations on new geometries, hopefully converging to the required stationary point.The availibility of large scale parallel computers, with tens of 1000s of processors offers both challenges and opportunities to the computational chemistry and materials science disciplines. The chief challenge is that the effective exploitation of such a machine requires software to have an extremely high parallel efficiency and for many modern techniques this is very difficult to achieve when computing the energy and forces for a given geometry. One way to increase the level of parallelism is to consider multiple geometries simultaneously and we propose to explore the possibility by implementing and testing a number of parallel geometry optimisation algorithms. These will include genetic algorithms and stochastic searches as well the exploration of multiple starting points. The evaluation of second derivatives by finite difference of first derivatives (forces), while expensive, may become possible when large scale parallelism is available.We will develop the new code in such a way that it can be used within a variety of computational science packages, including the materials chemistry codes CASTEP and CRYSTAL, the classical forcefield MD code DL_POLY, the ab initio quantum chemistry package GAMESS-UK and ChemShell which performs mixed Quantum/Classical calculations (for example, combining GAMESS-UK and DL_POLY). The resulting codes will accellerate the solution of many materials modelling and computational chemistry problems on large-scale facilities such as the UK's next national facility (HeCTOR) and similar facilities worldwide.
材料和化学学科中的许多计算工具利用几何优化技术,通常最小化相对于原子位置的能量以找到平衡结构,或势能面上的鞍点以定位化学反应的过渡态。传统上,这些稳定点是通过在一个初始的,猜测的几何形状进行能量和力的计算,然后通过连续的,顺序的计算新的几何形状接近稳定点,希望收敛到所需的稳定点。大规模并行计算机的可用性,与几十个1000的处理器提供了计算化学和材料科学学科的挑战和机遇。主要的挑战是,这种机器的有效利用需要软件具有极高的并行效率,对于许多现代技术,在计算给定几何形状的能量和力时,这是很难实现的。提高并行度的一种方法是同时考虑多个几何形状,我们建议通过实施和测试一些并行几何优化算法来探索这种可能性。这些将包括遗传算法和随机搜索以及多个起点的探索。通过一阶导数(力)的有限差分来计算二阶导数虽然昂贵,但当大规模并行可用时,可能成为可能。我们将开发新的代码,使其可以在各种计算科学软件包中使用,包括材料化学代码CASTEP和CRYSTAL,经典力场MD代码DL_POLY,从头算量子化学软件包GAMESS-UK和ChemShell,可执行混合量子/经典计算(例如,结合GAMESS-UK和DL_POLY)。由此产生的代码将加速解决许多材料建模和计算化学问题的大型设施,如英国的下一个国家设施(HeCTOR)和世界各地的类似设施。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Wander其他文献
Reconstruction of Clean and Adsorbate-Covered Metal Surfaces.
清洁且被吸附物覆盖的金属表面的重建。
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:62.1
- 作者:
Simon Titmuss;Adrian Wander;David S. King - 通讯作者:
David S. King
Adrian Wander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Parallel Search Algorithms for Heterogeneous Computing Environments
异构计算环境的并行搜索算法
- 批准号:
17K00296 - 财政年份:2017
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Parallel Language for Graph Search Applications in Massively Parallel Environments
大规模并行环境中图搜索应用程序的并行语言的开发
- 批准号:
17K00099 - 财政年份:2017
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HySim: Hybrid-parallel similarity search for the analysis of big genomic and proteomic data
HySim:用于分析大基因组和蛋白质组数据的混合并行相似性搜索
- 批准号:
329350978 - 财政年份:2016
- 资助金额:
$ 18.16万 - 项目类别:
Research Grants
Additive decomposition scheme of quantum search algorithm and its application to parallel search problem
量子搜索算法的加性分解方案及其在并行搜索问题中的应用
- 批准号:
16K05489 - 财政年份:2016
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on parallel algorithms for large scale Bayesian network structure search
大规模贝叶斯网络结构搜索并行算法研究
- 批准号:
15K20965 - 财政年份:2015
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Parallel Real-time Heuristic Search
并行实时启发式搜索
- 批准号:
478566-2015 - 财政年份:2015
- 资助金额:
$ 18.16万 - 项目类别:
University Undergraduate Student Research Awards
Parallel Tree Search for Mixed Integer Programming
混合整数规划的并行树搜索
- 批准号:
468065-2014 - 财政年份:2014
- 资助金额:
$ 18.16万 - 项目类别:
University Undergraduate Student Research Awards
Winning against Go masters with massively parallel search algorithm using 10,000 or more CPU cores
通过使用 10,000 个或更多 CPU 核心的大规模并行搜索算法战胜围棋大师
- 批准号:
25700038 - 财政年份:2013
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Speeding up Large-Scale Combinatorial Search by Parallel Accelerator with Fast Mutual Communication Function
利用具有快速相互通信功能的并行加速器加速大规模组合搜索
- 批准号:
23300014 - 财政年份:2011
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Parallel Real-time Heuristic Search
并行实时启发式搜索
- 批准号:
417115-2011 - 财政年份:2011
- 资助金额:
$ 18.16万 - 项目类别:
University Undergraduate Student Research Awards