Computational Linear Algebra for Partial Differential Equations: An LMS Durham Research Symposium

偏微分方程的计算线性代数:LMS Durham 研究研讨会

基本信息

  • 批准号:
    EP/F013914/1
  • 负责人:
  • 金额:
    $ 8.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Many areas of mathematical research are constrained only by a limitation on the ideas of researchers in the subject. Numerical analysis and scientific computing are altogether different, since research in these disciplines is also constrained by the limits of the computers currently available. This technological barrier is, however, rapidly receding and as a result, the numerical analysis research community is having to continually update its aims in response to the inexorable increases in processor speed and memory capability. The pressure from engineering applications is always to ``solve a bigger problem''. This is true not only in terms of a desire to use finer meshes for greater accuracy, but also in terms of the increasingly realistic possibility of solving fully coupled systems of partial differential equations (PDEs), as opposed to crudely decoupling the problem into component subproblems that are successively solved in an iterative framework.Research is now moving towards the study of inverse or ``design'' problems, where some optimality criterion is desired to be satisfied within the restriction of constraints which are themselves PDE problems linked to the design parameters. This cutting edge mathematical research area, commonly known as PDE optimization, is inspired by the use of computers as an engineering design tool as opposed to a simulation tool. For example, aeronautical engineers can now use computational fluid dynamics (for solving the Navier-Stokes equations) to design turbine blades with desired/optimal properties. This paradigm shift provides the primary motivation for this proposal to hold a numerical analysis symposium with PDE optimization as its central theme. Broadly speaking, the UK standing in the numerical analysis of PDEs is very high, with significant research groups at various universities. In particular, the UK numerical analysis community is internationally regarded for the research of individuals and groups working on important aspects of computational linear algebra which are applicable in this regard. It seems to be timely and appropriate to bring the top UK and international researchers in these fields together in the informal atmosphere provided by an LMS Durham Symposium. This will give the opportunity for the exchange of ideas and cross-fertilisation of research expertise. We are confident that exciting new international collaborations will be realised if this proposal comes to fruition. The symposium will have an uncluttered lecture programme, with ample opportunities for discussions, collaborations and informal talks. Our aim is to ensure that all are aware of new techniques and the new challenges that are arising for our areas of focus. By bringing together a broad range of experts, this meeting will have a significant impact on the development of these rich areas of research. The results of the meeting will be distributed initially via an actively-managed and easily accessible website, which will contain a list of participants, abstracts of talks and other relevant information. The main talks will be recorded (with permission of the speakers) with a camcorder, and will be placed on the website within one month of the finish of the meeting. Lecture notes and/or slides will also be put on the site, and all this material will be made freely available to all.A more detailed record of the meeting will be provided by the publication in research journals of cutting-edge articles inspired by the subjects covered in the meeting. The conference is expected to provide a major lasting fillip to world research in the theory of PDE optimization.
数学研究的许多领域只受到该学科研究人员思想的限制。数值分析和科学计算是完全不同的,因为这些学科的研究也受到目前可用计算机的限制。然而,这一技术障碍正在迅速消退,因此,数值分析研究界不得不不断更新其目标,以应对处理器速度和内存容量的不可阻挡的增长。工程应用的压力总是“解决更大的问题”。这不仅是为了使用更精细的网格以获得更高的精度,而且也是为了解决完全耦合的偏微分方程(PDE)系统的越来越现实的可能性,而不是将问题粗略地解耦为在迭代框架中连续求解的分量子问题。其中,在约束条件的限制内,希望满足某些最优性准则,这些约束条件本身是与设计参数相关联的PDE问题。这个前沿的数学研究领域,通常被称为PDE优化,其灵感来自于将计算机用作工程设计工具,而不是仿真工具。例如,航空工程师现在可以使用计算流体动力学(用于求解Navier-Stokes方程)来设计具有期望/最佳特性的涡轮机叶片。这种范式的转变提供了这个建议的主要动机举行数值分析研讨会的PDE优化作为其中心主题。从广义上讲,英国在偏微分方程数值分析方面的地位非常高,在各个大学都有重要的研究小组。特别是,英国数值分析界是国际公认的个人和团体的研究工作的重要方面的计算线性代数这是适用于这方面。这似乎是及时和适当的,使顶级英国和国际研究人员在这些领域在非正式的气氛中提供了一个LMS达勒姆研讨会。这将为交流思想和研究专业知识提供机会。我们相信,如果这一提议取得成果,将实现令人兴奋的新的国际合作。研讨会将有一个整洁的讲座计划,有充分的机会进行讨论,合作和非正式会谈。我们的目标是确保所有人都意识到新技术和新挑战,这些都是我们关注的领域。通过汇集广泛的专家,这次会议将对这些丰富的研究领域的发展产生重大影响。会议的结果将首先通过一个积极管理和容易进入的网站分发,该网站将载有与会者名单、会谈摘要和其他有关信息。主要会谈将被记录(与发言者的许可)与摄像机,并将在会议结束后一个月内放在网站上。演讲笔记和/或幻灯片也将放在网站上,所有这些材料都将免费提供给所有人。会议的更详细记录将通过在研究期刊上发表受会议主题启发的前沿文章来提供。预计这次会议将为世界偏微分方程优化理论的研究提供一个主要的持久的刺激。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Bolton其他文献

The performance improvement of SRAF placement rules using GA optimization
使用GA优化的SRAF放置规则的性能改进
  • DOI:
    10.1117/12.2241015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Xu;Bidan Zhang;Changan Wang;William Wilkinson;John Bolton
  • 通讯作者:
    John Bolton
SnowGlobe: a spherical fish-tank VR display
SnowGlobe:球形鱼缸 VR 显示器
Tu1408 DNA METHYLATION-BASED LIQUID BIOPSY SIGNATURE FOR THE EARLY DETECTION OF PATIENTS WITH PANCREATIC DUCTAL ADENOCARCINOMA
  • DOI:
    10.1016/s0016-5085(24)03498-x
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Keisuke Okuno;Shuichi Watanabe;John Bolton;Masanori Tokunaga;Yusuke Kinugasa;Ajay Goel
  • 通讯作者:
    Ajay Goel
Cell turnover
  • DOI:
    10.1007/bf01072933
  • 发表时间:
    1978-05-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    John Bolton;Max Cohen;Desmond Croft
  • 通讯作者:
    Desmond Croft
Exploring the Use of 360 Degree Curvilinear Displays for the Presentation of 3D Information
探索使用 360 度曲线显示器来呈现 3D 信息
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Bolton
  • 通讯作者:
    John Bolton

John Bolton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Bolton', 18)}}的其他基金

Combinatorial and Geometric Structures in Representation Theory: An LMS Durham Research Symposium
表示论中的组合和几何结构:LMS Durham 研究研讨会
  • 批准号:
    EP/G008485/1
  • 财政年份:
    2009
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant
New directions in the model theory of fields: an LMS Durham research symposium
场模型理论的新方向:LMS Durham 研究研讨会
  • 批准号:
    EP/F068751/1
  • 财政年份:
    2009
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant
Mathematical Aspects of Graphical Models: An LMS Durham Research Symposium
图模型的数学方面:LMS Durham 研究研讨会
  • 批准号:
    EP/F036477/1
  • 财政年份:
    2008
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant
Twistors, Strings and Scattering Amplitudes: An LMS Durham Research Symposium
扭曲、弦和散射振幅:LMS 达勒姆研究研讨会
  • 批准号:
    EP/E048676/1
  • 财政年份:
    2007
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant
Recent developments in Random Walks: An LMS Durham Reseach Symposium
随机游走的最新进展:LMS Durham 研究研讨会
  • 批准号:
    EP/E048595/1
  • 财政年份:
    2007
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant
Methods of Integrable systems in Geometry: An LMS Durham Research Symposium
几何中可积系统的方法:LMS Durham 研究研讨会
  • 批准号:
    EP/C522737/1
  • 财政年份:
    2006
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant
Dynamical Systems and Statistical Mechanics: an LMS Durham Research Symposium
动力系统和统计力学:LMS 达勒姆研究研讨会
  • 批准号:
    EP/D040027/1
  • 财政年份:
    2006
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Research Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: SI2-SSI: Sustaining Innovation in the Linear Algebra Software Stack for Computational Chemistry and Other Sciences
合作研究:SI2-SSI:计算化学和其他科学的线性代数软件堆栈的持续创新
  • 批准号:
    1550486
  • 财政年份:
    2016
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: Sustaining Innovation in the Linear Algebra Software Stack for Computational Chemistry and Other Sciences
合作研究:SI2-SSI:计算化学和其他科学的线性代数软件堆栈的持续创新
  • 批准号:
    1550493
  • 财政年份:
    2016
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Accurate and High Performance Computational Methods for Numerical Linear Algebra
数值线性代数的精确高性能计算方法
  • 批准号:
    25730076
  • 财政年份:
    2013
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: SI2-SSI: A Linear Algebra Software Infrastructure for Sustained Innovation in Computational Chemistry and other Sciences
合作研究:SI2-SSI:用于计算化学和其他科学持续创新的线性代数软件基础设施
  • 批准号:
    1148125
  • 财政年份:
    2012
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: A Linear Algebra Software Infrastructure for Sustained Innovation in Computational Chemistry and other Sciences
合作研究:SI2-SSI:用于计算化学和其他科学持续创新的线性代数软件基础设施
  • 批准号:
    1148485
  • 财政年份:
    2012
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SDCI HPC Improvement: Improvement and Support of Community Based Dense Linear Algebra Software for Extreme Scale Computational Science
合作研究:SDCI HPC 改进:针对超大规模计算科学的基于社区的密集线性代数软件的改进和支持
  • 批准号:
    1032639
  • 财政年份:
    2010
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SDCI HPC Improvement: Improvement and Support of Community Based Dense Linear Algebra Software for Extreme Scale Computational Science
合作研究:SDCI HPC 改进:针对超大规模计算科学的基于社区的密集线性代数软件的改进和支持
  • 批准号:
    1032815
  • 财政年份:
    2010
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SDCI HPC Improvement: Improvement and Support of Community Based Dense Linear Algebra Software for Extreme Scale Computational Science
合作研究:SDCI HPC 改进:针对超大规模计算科学的基于社区的密集线性代数软件的改进和支持
  • 批准号:
    1032861
  • 财政年份:
    2010
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Conference on Computational Linear Algebra with Application
计算线性代数及其应用会议
  • 批准号:
    0137841
  • 财政年份:
    2002
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了