PRiMMA: Privacy Rights Management for Mobile Applications

PRiMMA:移动应用程序的隐私权管理

基本信息

  • 批准号:
    EP/F023294/1
  • 负责人:
  • 金额:
    $ 78.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The age of Ubiquitous Computing is approaching fast: most people in the UK over the age of 8 carry mobile phones, which are becoming increasingly sophisticated interactive computing devices. Location-based services are also increasing in popularity and sophistication. There are many tracking and monitoring devices being developed that have a range of potential applications, from supporting mobile learning to remote health monitoring of the elderly and chronically ill. However, do users actually understand how much of their personal information is being shared with others? In a recently released report from the UK Information Commissioner, we were warned that the UK in particular is 'sleepwalking into a surveillance society', as ordinary members of the public give up vast amounts of personal information with no significant personal or societal advantage gained. In general, there will be a trade off between usefulness of disclosing private information and the risk of it being misused. This project will investigate techniques for protecting the private information typically generated from ubiquitous computing applications from malicious or accidental misuse.The project will investigate privacy requirements across the general population for a specific set of ubiquitous computing technologies. These requirements will be used to produce a Privacy Rights Management (PRM) framework that enables users to specify privacy preferences, to help visualize them, to learn from the user's behaviour what their likely preferences are, and to enforce privacy policies. We will make use of a large cohort of over 1000 OU students with a broad range of ages and backgrounds, both for identifying requirements and for evaluating tools for privacy management. This work will address a number of research issues:* how do people perceive privacy in ubiquitous systems?* what types of privacy controls would people like to have when using ubiquitous systems?* how to develop privacy control tools that are easy to use via simple interfaces (e.g. mobile phones) as well as large screen devices?* how to detect and resolve inconsistencies in users' privacy requirements?* what mechanisms can be used to automate privacy control in ubiquitous systems?The PRM framework we produce to address these issues will integrate users' privacy policies with their personal information to control how information is used. This is analogous to Digital Rights Management (DRM), which often incorporates information such as 'digital watermarks' in the data being protected or encapsulates the data such that it is self protecting. By providing an analysis and learning system within the framework, we believe that we can produce a usable system that does not burden users with complex privacy rule sets. The project relates to the Memories for Life and Ubiquitous Computing Grand Challenges, both of which raise issues relating to PRM in mobile applications.
无处不在的计算时代正在迅速到来:英国8岁以上的大多数人都携带着手机,手机正在成为越来越复杂的交互式计算设备。基于位置的服务也越来越受欢迎和复杂。正在开发的许多跟踪和监测设备具有一系列潜在的应用,从支持移动学习到对老年人和慢性病患者的远程健康监测。然而,用户真的了解他们的个人信息有多少被他人分享了吗?在英国信息专员最近发布的一份报告中,我们被警告说,特别是英国正在“梦游般地进入一个监控社会”,因为普通公众放弃了大量的个人信息,却没有获得显著的个人或社会优势。一般来说,在披露私人信息的有用性和被滥用的风险之间会有一个权衡。该项目将研究保护一般由无处不在的计算应用程序产生的私人信息免受恶意或意外滥用的技术。该项目将调查一组特定的普适计算技术在一般人群中的隐私需求。这些要求将用于生成隐私权管理(PRM)框架,使用户能够指定隐私偏好,帮助将其可视化,从用户的行为中了解他们可能的偏好是什么,并执行隐私政策。我们将利用超过1000名年龄和背景各异的公开大学学生,以确定私隐管理的要求和评估工具。这项工作将解决一些研究问题:*人们如何在无处不在的系统中感知隐私?*当使用无所不在的系统时,人们希望有什么样的隐私控制?*如何开发界面简单易用(例如流动电话)及大屏幕设备的私隐控制工具?*如何发现和解决用户隐私要求的不一致之处?*在无所不在的系统中,什么机制可以用来自动化隐私控制?我们为解决这些问题而制定的PRM框架将把用户的隐私政策与他们的个人信息结合起来,以控制信息的使用方式。这类似于数字版权管理(DRM),它通常在受保护的数据中包含诸如“数字水印”之类的信息,或者封装数据以使其自我保护。通过在框架内提供分析和学习系统,我们相信我们可以生成一个可用的系统,它不会给用户带来复杂的隐私规则集的负担。该项目与“终身记忆”和“无处不在的计算大挑战”有关,这两个项目都提出了与移动应用程序中的PRM相关的问题。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trust Management V
信托管理五
  • DOI:
    10.1007/978-3-642-22200-9_12
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong C
  • 通讯作者:
    Dong C
Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models.
槲皮素通过与化学生物学模型中的靶蛋白和相关基因相互作用来减弱病毒感染。
  • DOI:
    10.1007/978-3-642-04850-0_17
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rahman MA
  • 通讯作者:
    Rahman MA
Privacy Management in Mobile Applications: A Report on PriMo 2011
移动应用程序中的隐私管理:PriMo 2011 报告
Artificial Intelligence Applications and Innovations III
人工智能应用与创新三
  • DOI:
    10.1007/978-1-4419-0221-4_54
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corapi D
  • 通讯作者:
    Corapi D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Morris Sloman其他文献

Enhanced ICMP traceback with cumulative path
通过累积路径增强 ICMP 追踪
Report, edited by Paul Brusil: Policy 2001: Workshop on Policies for Distributed Systems and Networks

Morris Sloman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Morris Sloman', 18)}}的其他基金

AEDUS2: Adaptable Environments for Distributed Ubiquitous Systems
AEDUS2:分布式无处不在系统的适应性环境
  • 批准号:
    EP/E025188/1
  • 财政年份:
    2007
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Research Grant

相似海外基金

Evolving privacy and utility in data storage and publishing
数据存储和发布中不断发展的隐私和实用性
  • 批准号:
    DE240100165
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
  • 批准号:
    2338317
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Standard Grant
A Principled Framework for Explaining, Choosing and Negotiating Privacy Parameters of Differential Privacy
解释、选择和协商差异隐私的隐私参数的原则框架
  • 批准号:
    23K24851
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
  • 批准号:
    24K17366
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 78.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了