Analogue Evolutionary Brain Computer Interfaces
模拟进化脑机接口
基本信息
- 批准号:EP/F033818/1
- 负责人:
- 金额:$ 46.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The keyboard is a piece of plastic with lots of switches, which provides us with a reliable, but very unnatural form of input. The mouse is slightly less primitive. Still, it is only an electro-mechanical transducer of musculoskeletal movement. Both have been with us for many years and are still the best computer interfaces we have at the moment, yet they are unusable for people with severe musculoskeletal disorders and are themselves known causes of work-related upper-limb and back disorders: both hugely widespread problems for the UK's workforce.Wouldn't it be nice some day to be able to dispose of them and replace them with Brain-Computer Interfaces (BCIs) capable of directly interpreting the desires and intentions of computer users?This adventurous proposal aims to carry out an innovative and ambitious interdisciplinary research programme at the edge of Computer Science, Biomedical Engineering, Neuroscience and Psychology aimed at developing precisely these devices with a novel powerful BCI approach recently developed by the applicants.BCI has been a dream of researchers for many years, but developments have been slow and, with rare exceptions, BCI is still effectively a curiosity that can be used only in the lab. So, what's different about this project?In very recent research, we were able to develop a prototype BCI mouse capable of full 2-D motion control (a rarity in the BCI world), which uniquely can be used by any person without any prior training within minutes. This was possible thanks to our taking a completely innovative approach to BCI. Previous BCI designs were based on the paradigm of observing EEG signals looking for specific features or waves, manipulating them and then making a yes-or-no decision as to whether such features or waves were present. Contrary to this design wisdom, we completely dispose of the decision step and allow brain waves to directly control the computer via simple analogue transformations. Furthermore, we only partially design the system, leaving the completion and customisation of the design for each specific user to an evolutionary algorithm. This, thanks to an artificial form of Darwinian evolution inside the computer, performs the difficult tasks of selecting the best EEG channels, waves and analogue manipulations. Using these same two ingredients (analogue approach and evolutionary design) and starting from our successful experimental BCI mouse, this project specifically aims at developing brain-computer interfaces which are sufficiently robust, flexible and cheap to leave the lab and that can start making a serious impact in the real world.To maximise performance, preliminary work will determine the optimal visual presentation conditions that minimise cognitive load, perceptual errors and target-distractors interference.
键盘是一块有很多开关的塑料,它为我们提供了一种可靠但非常不自然的输入形式。老鼠稍微不那么原始。尽管如此,它只是肌肉骨骼运动的机电换能器。两者都已经与我们在一起很多年了,仍然是我们目前拥有的最好的计算机界面,但它们对于患有严重肌肉骨骼疾病的人来说是不可用的,并且它们本身就是与工作相关的上肢和背部疾病的已知原因:这两个都是英国劳动力普遍存在的问题。如果有一天能够解决它们并用脑机接口(BCI)取代它们,那不是很好吗?能够直接解释计算机用户的愿望和意图?这项大胆的提议旨在开展一项创新和雄心勃勃的跨学科研究计划,在计算机科学,生物医学工程,神经科学和心理学的边缘,旨在利用申请人最近开发的新颖强大的BCI方法开发这些设备。BCI多年来一直是研究人员的梦想,但发展缓慢,除了极少数例外,BCI仍然是一种只能在实验室中使用的好奇心。那么,这个项目有什么不同呢?在最近的研究中,我们能够开发出一种能够进行完全二维运动控制的BCI鼠标原型(这在BCI领域是罕见的),它可以在几分钟内被任何人使用,而无需任何事先培训。这要归功于我们对BCI采取了完全创新的方法。以前的BCI设计是基于观察EEG信号寻找特定特征或波的范例,操纵它们,然后对这些特征或波是否存在做出是或否的决定。与这种设计智慧相反,我们完全放弃了决策步骤,并允许脑电波通过简单的模拟转换直接控制计算机。此外,我们只设计了系统的一部分,将为每个特定用户完成和定制设计的工作留给了进化算法。这要归功于计算机内部达尔文进化论的人工形式,它执行了选择最佳EEG通道、波和模拟操作的艰巨任务。用同样的两种原料(模拟方法和进化设计),并从我们成功的实验BCI小鼠开始,该项目特别旨在开发脑机接口,这些接口足够强大,灵活和廉价,可以离开实验室,并开始在真实的世界中产生严重的影响。为了最大限度地提高性能,初步工作将确定最佳的视觉呈现条件,使认知负荷最小化,知觉错误和目标干扰物干扰。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applications of Evolutionary Computation
进化计算的应用
- DOI:10.1007/978-3-642-20520-0_23
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Colton S
- 通讯作者:Colton S
A genetic programming approach to detecting artifact-generating eye movements from EEG in the absence of electro-oculogram
- DOI:10.1109/ner.2011.5910575
- 发表时间:2011-06
- 期刊:
- 影响因子:0
- 作者:R. Poli;C. Cinel;L. Citi;M. Salvaris
- 通讯作者:R. Poli;C. Cinel;L. Citi;M. Salvaris
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Riccardo Poli其他文献
Exact Schema Theory and Markov Chain Models for Genetic Programming and Variable-length Genetic Algorithms with Homologous Crossover
- DOI:
10.1023/b:genp.0000017010.41337.a7 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Riccardo Poli;Nicholas Freitag McPhee;Jonathan E. Rowe - 通讯作者:
Jonathan E. Rowe
Swarm intelligence: the state of the art special issue of natural computing
- DOI:
10.1007/s11047-009-9172-6 - 发表时间:
2010-01-05 - 期刊:
- 影响因子:1.600
- 作者:
Eric Bonabeau;David Corne;Riccardo Poli - 通讯作者:
Riccardo Poli
Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework
- DOI:
10.1007/s12293-009-0022-y - 发表时间:
2009-10-11 - 期刊:
- 影响因子:2.300
- 作者:
Mohamed Bader-El-Den;Riccardo Poli;Shaheen Fatima - 通讯作者:
Shaheen Fatima
On the application of Genetic Programming to the envelope reduction problem
遗传编程在包络缩减问题中的应用
- DOI:
10.1109/ceec.2012.6375378 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
B. Koohestani;Riccardo Poli - 通讯作者:
Riccardo Poli
Discovery of backpropagation learning rules using genetic programming
使用遗传编程发现反向传播学习规则
- DOI:
10.1109/icec.1998.699761 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
A. Radi;Riccardo Poli - 通讯作者:
Riccardo Poli
Riccardo Poli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Riccardo Poli', 18)}}的其他基金
ONR-15-FOA-0011 MURI Topic #3 - Closed-Loop Multisensory Brain-Computer Interface for Enhanced Decision Accuracy
ONR-15-FOA-0011 MURI 主题
- 批准号:
EP/P009204/1 - 财政年份:2016
- 资助金额:
$ 46.48万 - 项目类别:
Research Grant
Visiting Fellowship: Bringing contemporary biology into Evolutionary Computation: Plasticity, hierarchy, and genetic re-use
访问学者:将当代生物学带入进化计算:可塑性、层次结构和基因重用
- 批准号:
EP/G000484/1 - 财政年份:2008
- 资助金额:
$ 46.48万 - 项目类别:
Research Grant
相似海外基金
Conscious-brain correlates and evolutionary continuity of auditory qualia space
听觉感受空间的意识脑关联和进化连续性
- 批准号:
23K17646 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Evolutionary Algorithm Development for Applications in Brain Connectomics and Other Complex Systems
脑连接组学和其他复杂系统应用的进化算法开发
- 批准号:
RGPIN-2020-04500 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Discovery Grants Program - Individual
Evolutionary Algorithm Development for Applications in Brain Connectomics and Other Complex Systems
脑连接组学和其他复杂系统应用的进化算法开发
- 批准号:
RGPIN-2020-04500 - 财政年份:2021
- 资助金额:
$ 46.48万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Origin and Evolutionary Divergence of the Pancrustacean Brain
合作研究:泛甲壳动物大脑的起源和进化分歧
- 批准号:
2121935 - 财政年份:2021
- 资助金额:
$ 46.48万 - 项目类别:
Continuing Grant
Evolutionary Algorithm Development for Applications in Brain Connectomics and Other Complex Systems
脑连接组学和其他复杂系统应用的进化算法开发
- 批准号:
RGPIN-2020-04500 - 财政年份:2020
- 资助金额:
$ 46.48万 - 项目类别:
Discovery Grants Program - Individual
Evolutionary Algorithm Development for Applications in Brain Connectomics and Other Complex Systems
脑连接组学和其他复杂系统应用的进化算法开发
- 批准号:
DGECR-2020-00269 - 财政年份:2020
- 资助金额:
$ 46.48万 - 项目类别:
Discovery Launch Supplement
Experimental approach to understand the mechanism mediating epigenome formation in the primate brain by the evolutionary acquisition of non-coding RNAs
通过非编码 RNA 的进化获取来了解介导灵长类大脑表观基因组形成的机制的实验方法
- 批准号:
19H03138 - 财政年份:2019
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantifying mindfulness: Characterization of meditative brain states using an evolutionary optimization
量化正念:使用进化优化表征冥想的大脑状态
- 批准号:
19K12145 - 财政年份:2019
- 资助金额:
$ 46.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Origin and Evolutionary Divergence of the Pancrustacean Brain
合作研究:泛甲壳动物大脑的起源和进化分歧
- 批准号:
1754610 - 财政年份:2018
- 资助金额:
$ 46.48万 - 项目类别:
Continuing Grant
Evolutionary mechanisms controlling brain size and complexity
控制大脑大小和复杂性的进化机制
- 批准号:
BB/S001530/1 - 财政年份:2018
- 资助金额:
$ 46.48万 - 项目类别:
Research Grant