Quantitative Endoscopic Measurement of Anatomy
解剖学的定量内窥镜测量
基本信息
- 批准号:7451384
- 负责人:
- 金额:$ 23.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAnatomic SurfaceAnatomic structuresAnatomyAreaCaliberChildChildhoodClinicalClinical TrialsComputer Systems DevelopmentDataData CollectionDevicesDiagnosisDiagnosticDiagnostic ProcedureDiseaseEndoscopesEndoscopyFundingGoalsGoldImageInvasiveLesionMagnetic Resonance ImagingMeasurementMeasuresMedicineMethodsModalityModelingMonitorMotionNumbersOperative Surgical ProceduresOpticsPerformancePropertyProtocols documentationResearchSinusStagingStandards of Weights and MeasuresStenosisSurfaceSystemTestingTimeWorkairway obstructionbaseclinical applicationclinically relevantdesignprototypereconstructionsizetreatment effecttumor
项目摘要
DESCRIPTION (provided by applicant): Video endoscopy is widely used in both diagnostic and interventional clinical applications. However, current video endoscopy systems do not support reconstruction and quantitative measurement of viewed anatomy. Yet, the ability to measure and model from video images has a number of potential clinical applications such as sizing a tumor, monitoring the change in size of a lesion over time, or computing area, size, or volume measurements of anatomy. At the same time, recent advances in algorithms for reconstruction from video images offer the opportunity of creating methods for quantitative endoscopic measurement (QEM) systems. The goal of the proposed project is to determine whether QEM is potentially usable as a routine diagnostic or interventional imaging modality. To do so, we intend to develop and evaluate a prototype system in the context of a specific, acute clinical need: the measurement of stenosis in pediatric airways. This is an ideal test application for QEM, as the current method of performing airway sizing is invasive, and it has a limited degree of accuracy. Furthermore, providing a new, more accurate modality would potentially enable better monitoring and treatment of this disease. The specific aims for this project are thus:
1. Aim 1: Develop a clinically deployable endoscopic data collection system.
2. Aim 2: Develop and validate algorithms for computing geometric properties of anatomic surfaces from a tracked video endoscope.
3. Aim 3: Demonstrate the feasibility of QEM in a controlled clinical setting.
Finally, it is important to emphasize that, while we are focused on a specific clinical setting, the basic capabilities described here will have a much broader impact. Optical and video endoscopic devices are widely used in many areas of diagnosis and surgery. The ability to easily capture the full geometry of airways, sinus cavities, and so forth will open the door to a number of other scientific and clinical investigations. For example, it would become possible to perform repeat imaging to track the effect of treatment, and to perform in-office diagnostic procedures that currently rely on more expensive CT or MR imaging.
Project Narrative: The proposed project will develop methods for computing accurate models of anatomy from endoscopic data. It will be specifically applied to a clinical problem of high relevant: the sizing of airway obstructions in young children. However, the possibility of performing simple, safe sizing of anatomic structures has wide relevant in many areas of medicine.
描述(由申请人提供):视频内窥镜广泛用于诊断和介入临床应用。然而,当前的视频内窥镜检查系统不支持所观察的解剖结构的重建和定量测量。然而,从视频图像测量和建模的能力具有许多潜在的临床应用,例如确定肿瘤的大小,监测病变大小随时间的变化,或计算解剖结构的面积、大小或体积测量。同时,从视频图像重建算法的最新进展提供了创建定量内窥镜测量(QEM)系统的方法的机会。拟议项目的目标是确定QEM是否可能用作常规诊断或介入成像模式。为此,我们打算开发和评估一个原型系统的背景下,一个特定的,急性的临床需求:在小儿气道狭窄的测量。这是QEM的理想测试应用,因为当前进行气道测量的方法是有创的,并且其准确度有限。此外,提供一种新的、更准确的模式将有可能更好地监测和治疗这种疾病。因此,该项目的具体目标是:
1.目的1:开发一个临床可部署的内窥镜数据采集系统。
2.目标2:开发和验证用于计算跟踪视频内窥镜解剖表面几何特性的算法。
3.目的3:证明QEM在受控临床环境中的可行性。
最后,重要的是要强调,虽然我们专注于特定的临床环境,但这里描述的基本功能将产生更广泛的影响。光学和视频内窥镜设备广泛用于诊断和手术的许多领域。能够轻松捕获气道、窦腔等的完整几何形状,将为许多其他科学和临床研究打开大门。例如,可以进行重复成像以跟踪治疗效果,并进行目前依赖于更昂贵的CT或MR成像的办公室诊断程序。
项目叙述:拟议的项目将开发从内窥镜数据计算准确解剖模型的方法。它将专门应用于一个高度相关的临床问题:幼儿气道阻塞的大小。然而,对解剖结构进行简单、安全的尺寸测量的可能性在许多医学领域具有广泛的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY Donald HAGER其他文献
GREGORY Donald HAGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY Donald HAGER', 18)}}的其他基金
Improved Surgical Navigation Using Video-CT Registration
使用视频 CT 配准改进手术导航
- 批准号:
10606579 - 财政年份:2021
- 资助金额:
$ 23.11万 - 项目类别:
Improved Surgical Navigation Using Video-CT Registration
使用视频 CT 配准改进手术导航
- 批准号:
10444996 - 财政年份:2021
- 资助金额:
$ 23.11万 - 项目类别:
Enhanced Navigation for Endoscopic Sinus Surgery Through Video Analysis
通过视频分析增强内窥镜鼻窦手术导航
- 批准号:
8508940 - 财政年份:2012
- 资助金额:
$ 23.11万 - 项目类别:
Enhanced Navigation for Endoscopic Sinus Surgery Through Video Analysis
通过视频分析增强内窥镜鼻窦手术导航
- 批准号:
8691423 - 财政年份:2012
- 资助金额:
$ 23.11万 - 项目类别:
Enhanced Navigation for Endoscopic Sinus Surgery Through Video Analysis
通过视频分析增强内窥镜鼻窦手术导航
- 批准号:
8348414 - 财政年份:2012
- 资助金额:
$ 23.11万 - 项目类别:
Enhanced Navigation for Endoscopic Sinus Surgery Through Video Analysis
通过视频分析增强内窥镜鼻窦手术导航
- 批准号:
8868996 - 财政年份:2012
- 资助金额:
$ 23.11万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




