Cyclic Proofs for Logic-Based Program Verification
基于逻辑的程序验证的循环证明
基本信息
- 批准号:EP/F043767/1
- 负责人:
- 金额:$ 32.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last few years have seen a increasingly widespreadinterest, both from the academic perspective and from elementsof industry, in the mathematical verification of desirableproperties of computer programs. Such properties might state,for example, that a program does not exceed its memory bounds(``memory safety'') or that it is always able to perform acertain action (``liveness''). The development of appropriatereasoning principles for programs and of proof systems andcomputer tools supporting those principles is thus currentlyattracting considerable activity amongst the computer scienceresearch community.Despite the advances in developing various forms of programlogic, the underlying notion of a *proof* of a programproperty has changed very little; by default, a proof is afinite tree whose construction respects the particularinference rules of the logic (a.k.a. derivation tree ), sothat the leaves of the tree are axiom instances and the root ofthe tree is the theorem to be proven, with intermediate nodesrelated by logical inferences. Recently, however, analternative mode of formal proof has been mooted as a paradigmfor reasoning in logics that feature various forms ofrecursion, known as *cyclic proof*. A cyclic proof isessentially obtained by identifying some cycles in a derivationtree, i.e., a cyclic proof is really a regular, infinitederivation tree, represented in cyclic graph form. Typically,not every such proof structure represents a sound proof, so anadditional, global guardedness condition is imposed oncyclic proofs that ensures their soundness. The existing investigations of cyclic proof, first in the purelogical settings of first-order logic and BI with inductivedefinitions, and subsequently in a separation logic systemfor proving termination of simple programs, have demonstratedits viability as a tool for formal reasoning, and its potentialpower as a proof method. Moreover, in the case of first-orderlogic with inductive definitions, a completeness result foran associated infinitary proof system establishes the semanticnaturality of the approach. We view our previous work in thesedirections as having substantially established the area ofcyclic proof as both a theoretically natural one worthy ofstudy, and ripe for applications in program verification.The broad aim of the proposed Postdoctoral Fellowship is tobuild on the developed theoretical foundations of cyclic proof,and especially its initial development into separationlogic-based reasoning about programs, in order to furtherexploit the ideas in the direction of applications. First, we wish to formulate and analyse cyclic proof systems for program verification based on separation logic, and to extend the cyclic proof concept to mixed induction and coinduction. Second, we wish to investigate the potential of cyclic proof as a vehicle for automated theorem proving.
在过去的几年里,无论是从学术的角度还是从工业的角度,人们对计算机程序的可验证性的数学验证都越来越感兴趣。例如,这样的属性可以声明程序没有超出它的内存限制("内存安全“),或者它总是能够执行某个操作("活动”)。因此,为程序开发适当的推理原则,并开发支持这些原则的证明系统和计算机工具,目前在计算机科学研究界引起了相当大的兴趣。尽管在开发各种形式的程序逻辑方面取得了进展,但程序属性的证明的基本概念几乎没有改变;默认情况下,证明是一个有限的树,它的构造遵循逻辑的特定推理规则(也称为“逻辑推理”)。导出树),这样树的叶子是公理实例,树的根是要证明的定理,中间节点由逻辑推理联系起来。然而,最近,一种形式证明的替代模式被提出来作为逻辑推理的范例,这种逻辑推理以各种形式的递归为特征,被称为循环证明。一个循环证明实质上是通过在一个导子树中识别一些循环来获得的,即,一个循环证明实际上是一个规则的无限导出树,用循环图的形式表示。通常,并不是每个这样的证明结构都代表一个可靠的证明,所以一个额外的全局保护条件被强加在循环证明上,以确保它们的可靠性。循环证明的现有研究,首先是在一阶逻辑和BI的纯逻辑设置与归纳定义,随后在分离逻辑系统证明简单程序的终止性,已经证明了它作为形式化推理工具的可行性,以及它作为证明方法的潜在力量。此外,在具有归纳定义的一阶逻辑的情况下,一个相关的无穷证明系统的完备性结果建立了该方法的语义自然性。我们认为我们以前在这些方向上的工作已经基本上建立了循环证明领域,作为一个理论上自然的值得研究的领域,并且在程序验证中的应用已经成熟。拟议的博士后奖学金的广泛目标是建立在循环证明的发展理论基础上,特别是它最初的发展成为基于分离逻辑的程序推理,以便在应用方向上进一步开拓思路。首先,我们希望制定和分析基于分离逻辑的程序验证循环证明系统,并将循环证明概念扩展到混合归纳和共归纳。第二,我们希望研究循环证明作为自动定理证明工具的潜力。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Unified Display Proof Theory for Bunched Logic
- DOI:10.1016/j.entcs.2010.08.012
- 发表时间:2010-09-06
- 期刊:
- 影响因子:0
- 作者:Brotherston, James
- 通讯作者:Brotherston, James
Classical BI a logic for reasoning about dualising resources
经典 BI 资源二元化推理逻辑
- DOI:10.1145/1594834.1480923
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Brotherston J
- 通讯作者:Brotherston J
Undecidability of Propositional Separation Logic and Its Neighbours
命题分离逻辑及其邻居的不可判定性
- DOI:10.1145/2542667
- 发表时间:2014
- 期刊:
- 影响因子:2.5
- 作者:Brotherston J
- 通讯作者:Brotherston J
Classical BI: a logic for reasoning about dualising resources
- DOI:10.1145/1480881.1480923
- 发表时间:2009-01
- 期刊:
- 影响因子:0
- 作者:J. Brotherston;Cristiano Calcagno
- 通讯作者:J. Brotherston;Cristiano Calcagno
Automated Reasoning with Analytic Tableaux and Related Methods
使用分析表和相关方法进行自动推理
- DOI:10.1007/978-3-642-40537-2_17
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Khodadadi M
- 通讯作者:Khodadadi M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Brotherston其他文献
Bunched Logics Displayed
- DOI:
10.1007/s11225-012-9449-0 - 发表时间:
2012-10-20 - 期刊:
- 影响因子:0.600
- 作者:
James Brotherston - 通讯作者:
James Brotherston
The failure of cut-elimination in cyclic proof for first-order logic with inductive definitions
带归纳定义的一阶逻辑循环证明中割除法的失败
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yukihiro Oda;James Brotherston;M. Tatsuta - 通讯作者:
M. Tatsuta
James Brotherston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Brotherston', 18)}}的其他基金
Boosting Automated Verification Using Cyclic Proof
使用循环证明增强自动验证
- 批准号:
EP/K040049/1 - 财政年份:2013
- 资助金额:
$ 32.29万 - 项目类别:
Research Grant
相似海外基金
A new look at security proofs of cryptographic primitives from logic
从逻辑角度重新审视密码原语的安全证明
- 批准号:
18K19780 - 财政年份:2018
- 资助金额:
$ 32.29万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
"Philosophy of Proofs" - Towards New Developments of Philosophy of Logic and Mathematics
《证明哲学》——走向逻辑与数学哲学的新发展
- 批准号:
17H02265 - 财政年份:2017
- 资助金额:
$ 32.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The readability of proofs in diagrammatic logic
图解逻辑证明的可读性
- 批准号:
EP/M011763/1 - 财政年份:2015
- 资助金额:
$ 32.29万 - 项目类别:
Research Grant
Interdisciplinary Study in Philosophy of Logic - With a special focus on theory of inferences and proofs of intuitionistic logic
逻辑哲学的跨学科研究 - 特别关注直觉逻辑的推论和证明理论
- 批准号:
23520036 - 财政年份:2011
- 资助金额:
$ 32.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formal Proofs of Realistic Programs using Separation Logic
使用分离逻辑的现实程序的形式证明
- 批准号:
21700048 - 财政年份:2009
- 资助金额:
$ 32.29万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Syntatic Proofs for Major Theorems of Modal Logic
模态逻辑主要定理的综合证明
- 批准号:
333595-2006 - 财政年份:2008
- 资助金额:
$ 32.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Syntatic Proofs for Major Theorems of Modal Logic
模态逻辑主要定理的综合证明
- 批准号:
333595-2006 - 财政年份:2007
- 资助金额:
$ 32.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Proofs, Functions and Computations: A web-based course as a laboratory for enhanced teaching and learning in logic, mathematics and computer science
证明、函数和计算:基于网络的课程,作为加强逻辑、数学和计算机科学教学的实验室
- 批准号:
0618806 - 财政年份:2006
- 资助金额:
$ 32.29万 - 项目类别:
Standard Grant
Syntatic Proofs for Major Theorems of Modal Logic
模态逻辑主要定理的综合证明
- 批准号:
333595-2006 - 财政年份:2006
- 资助金额:
$ 32.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Options For Proofs: New Perspectives on Propositional Logic
证明选项:命题逻辑的新视角
- 批准号:
DP0343388 - 财政年份:2003
- 资助金额:
$ 32.29万 - 项目类别:
Discovery Projects














{{item.name}}会员




