Validation of an innovative diagnostic tool for reducing traumatic knee injuries
验证用于减少膝盖创伤性损伤的创新诊断工具
基本信息
- 批准号:7457489
- 负责人:
- 金额:$ 18.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcademic Research Enhancement AwardsAnterior Cruciate LigamentAthleticCalibrationClinicalCollectionDataData AnalysesDatabasesDevelopmentDevicesDiagnosticDropsEaglesEarly identificationEnvironmentEpidemicFeedbackFemaleFinancial costFutureGoalsHormonalIndividualInjuryInterventionKnee InjuriesLaboratoriesLower ExtremityManufactured basketballMarketingMeasurementMeasuresMotionMovementNumbersOpticsPatternPopulations at RiskPrevention strategyProtocols documentationPublic HealthRangeRateResearchResearch PersonnelResolutionRiskScreening procedureSideSoccerStandards of Weights and MeasuresStudy SubjectSystemSystems AnalysisTechnical ExpertiseTechniquesTechnologyTestingTrainingValidationWomancostinnovationmennovelrepairedtool
项目摘要
DESCRIPTION (provided by applicant): The overall goal of this R15 Academic Research Enhancement Award (AREA) proposal is to implement and validate a new three-dimensional (3-D) motion tracking system within an athletic pre-participation physical exam (PPE). Injuries to the anterior cruciate ligament (ACL) have reached epidemic proportions among young female athletes, with a high physical and financial cost. Research efforts toward reducing ACL injury have focused on anatomical, hormonal, and neuromuscular factors that may contribute to increased risk. The factor that appears to show the greatest promise to discriminate athletes at risk is 3-D motion analysis of lower extremity dynamics during athletic activities. To be clinically useful, 3-D motion analysis must be accessible to large numbers of athletes. A 3-D motion analysis screening tool for ACL injury risk that can be deployed on a large scale is needed. Such a tool must be able to record outside of the laboratory with a single camera, require little or no calibration and little technical expertise for the user. Further, such a system should generate nearly instantaneous feedback to the clinician and athlete, and must be relatively inexpensive. No technology currently exists on the market that can remotely meet these criteria. The Retro-Grate Reflector (RGR) is a novel single-camera 3-D motion tracking technology. The RGR exploits the information content of moiri patterns generated by a lightweight, multi-layer passive optical target to determine 3-D information with a single camera. The specific aims of this study are to implement RGR motion tracking in the PPE for intercollegiate athletes and validate the results against a high-precision Eagle motion analysis system. The screening device will be utilized during the PPE screening of athletes participating in intercollegiate men's and women's soccer and basketball and women's volleyball at UW-Milwaukee. The athletes will perform slow squatting, drop jumping, and side cutting maneuvers while 3-D motion data are collected with the RGR system. These athletes will later attend a testing session where the protocol will be repeated with the Eagle system. Results from the Eagle system will serve as a standard for comparison with the RGR data. The long-term goal is to establish clinically valid thresholds for injury screenings, and this device will allow for large-scale collection of 3-D motion data within a typical PPE. In order to achieve this goal in a future R01 submission, the efficacy of use of the RGR motion capture system within a PPE must first be established, and its results validated against standard 3-D motion capture techniques. Other investigators have demonstrated effective identification of the at risk population by motion analysis and 75% reduction in injury risk with targeted training. If motion analysis could be included in the PPE, the potential exists to reduce the number of traumatic knee injuries by 15,000 per year. PUBLIC HEALTH RELEVANCE. Anterior cruciate ligament injuries are far too common for young athletes, particularly females. While they can be surgically repaired (at great cost), long-term consequences persist. The results of this study will establish a new way to identify athletes who are at greatest risk, allowing for targeted interventions and a dramatic decrease in the rate of these injuries.
该R15学术研究增强奖(AREA)提案的总体目标是在运动参与前体检(PPE)中实施和验证新的三维(3-D)运动跟踪系统。前十字韧带(ACL)损伤在年轻女运动员中已达到流行病的比例,并造成了高昂的身体和经济代价。减少ACL损伤的研究工作集中在可能导致风险增加的解剖学、激素和神经肌肉因素上。似乎显示出最大的承诺,以区别运动员的风险因素是3-D运动分析的下肢动力学在体育活动。为了在临床上有用,3D运动分析必须能够被大量的运动员使用。需要一种可以大规模部署的ACL损伤风险的三维运动分析筛选工具。这样的工具必须能够在实验室外用单个相机进行记录,需要很少或不需要校准,并且对用户来说需要很少的技术专长。此外,这样的系统应该向临床医生和运动员产生几乎即时的反馈,并且必须相对便宜。目前市场上没有任何技术可以远远满足这些标准。Retro-Grate Reflector(RGR)是一种新颖的单摄像机三维运动跟踪技术。RGR利用由轻质多层无源光学目标产生的莫尔图案的信息内容来确定具有单个相机的3D信息。本研究的具体目的是实现RGR运动跟踪在PPE的校际运动员和验证的结果对高精度鹰运动分析系统。筛选设备将用于在参加校际男子和女子足球和篮球和女子排球在威斯康星大学密尔沃基分校的运动员PPE筛选。运动员将进行缓慢蹲下,跳下,侧切演习,而三维运动数据收集与RGR系统。这些运动员稍后将参加测试会议,在该会议上,将使用Eagle系统重复该方案。Eagle系统的结果将作为与RGR数据进行比较的标准。长期目标是建立临床有效的损伤筛查阈值,该设备将允许在典型的PPE内大规模收集3D运动数据。为了在未来的R 01提交中实现这一目标,必须首先确定在PPE中使用RGR运动捕捉系统的有效性,并根据标准3-D运动捕捉技术对其结果进行验证。其他研究人员已经证明,通过运动分析可以有效识别风险人群,并且通过有针对性的培训可以降低75%的受伤风险。如果PPE中可以包含运动分析,则每年有可能减少15,000例创伤性膝关节损伤。公共卫生相关性。前十字韧带损伤对于年轻运动员来说太常见了,尤其是女性。虽然它们可以通过手术修复(代价高昂),但长期后果仍然存在。这项研究的结果将建立一种新的方法来识别处于最大风险的运动员,从而进行有针对性的干预并大幅降低这些伤害的发生率。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRISTIAN MATTHEW O'CONNOR其他文献
KRISTIAN MATTHEW O'CONNOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}