Probing Tumor Microenvironment Using Nanotechnology
利用纳米技术探测肿瘤微环境
基本信息
- 批准号:7343362
- 负责人:
- 金额:$ 169.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-07 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBio-BaseBiomedical EngineeringBiosensorCalculiCellsChargeChemicalsCleaved cellClinicalClinical TrialsColorDataDetectionDevelopmentDiagnosisDiagnosticDiffusionDrug Delivery SystemsEndopeptidasesEndotheliumEngineeringEnsureEnvironmentEnzymesFluorescenceGeneral HospitalsHistologyImageImmunoconjugatesIn VitroInjection of therapeutic agentInstitutesJointsLabelLaser Scanning MicroscopyMalignant NeoplasmsMapsMassachusettsMedicineMetabolicMethodologyMicroscopyMolecularMusNanotechnologyNatureObject AttachmentOperative Surgical ProceduresOxygenPeptide HydrolasesPeptidesPharmaceutical PreparationsPhenotypePhysiologicalPlasmaPolyethylene GlycolsPrincipal InvestigatorPropertyPublicationsQuantum DotsRadiation therapyRangeResearchResourcesScienceScientistSemiconductorsSilicatesSolid NeoplasmSpecificityStagingStatistical ModelsStromal CellsSurfaceSystemTechniquesTechnologyTestingTherapeuticTranslational ResearchWorkbasebioimagingcancer cellcancer therapychemotherapydesigndesireimprovedin vivoinnovationinsightinterstitialintravenous injectionmathematical modelmulti-photonmultidisciplinarynanocrystalnanoparticlenanoscalenovelnovel strategiesparticleprogramsradius bone structuresizetargeted deliverytooltumortwo-photonvector
项目摘要
DESCRIPTION (provided by applicant): This Bioengineering Research Partnership (BRP) will exploit emerging advances in semiconductor nanocrystal-based biomedical imaging to probe the tumor microenvironment and to develop therapeutic and diagnostic strategies. To accomplish this, we have assembled a multidisciplinary team of scientists and engineers at the Massachusetts General Hospital (MGH) and Massachusetts Institute of Technology (MIT) with a successful track record of basic and translational research. Over the past decade, this team has provided unprecedented insight into the nature of transport barriers in tumors (Nature Reviews Cancer, 2002). These exciting scientific findings resulted from innovations in intravital imaging (Nature Medicine, 1997, 2001, 2003, 2004), from exploiting molecular tools and quantum dot technology (Nature Medicine, 2005), and from the development of unique in vitro, in vivo, and mathematical models (PNAS, 1998, JCO, 2006). Our discoveries to date have led to novel strategies for improving drug delivery to tumors (Science, 2005). Development Cores led by M. Bawendi (an early pioneer of quantum dots) and D. Nocera at MIT are the corner stone of this BRP. They will develop novel nanocrystal (quantum dot) constructs, biosensors, and immunoconjugates which are not only essential for all three projects in this BRP but also provide a new direction in nanocrystal based bio-imaging by creating "smart" nanocrystal probes of chemical and morphological environment. In Project 1, led by D. Fukumura and L. Munn, we aim to develop "design rules" for nanoparticles and apply these rules to make "smart" nanoparticles that, by changing their size and charge, can circumvent tumor barriers. In Project 2, led by R.K.Jain, we seek to map metabolic microenvironment of tumors with novel nanocrystal based biosensors and improve pH-sensitive chemotherapy and oxygen-sensitive radiation therapy. In Project 3, led by D. Duda and Y. Boucher, we harness the multiplexing capabilities of nanocrystal immunoconjugate probes and biosensors to develop in vivo multi-cell molecular and functional phenotyping techniques and establish a novel treatment strategy based on targeting stromal cells in tumors. A high level of scientific interaction among the three Projects, two Development Cores and four scientific Cores is a major strength of the BRP - as documented in joint publications by Project and Core leaders. Each Project will rely on multi-photon microscopy, mathematical modeling, and statistical support provided by Core A; cutting-edge molecular, cellular and histological expertise provided by Core B; superb surgical and animal support provided by Core C; and administrative support provided by Core D. We also have the resources and the clinical collaborators in place to readily take our scientific findings to clinical trials (Nature Medicine, 2004, Cancer Cell, 2007).
描述(由申请人提供):该生物工程研究伙伴关系(BRP)将利用半导体纳米生物医学成像的新进展来探测肿瘤微环境并开发治疗和诊断策略。为了实现这一目标,我们在马萨诸塞州总医院(MGH)和马萨诸塞州理工学院(MIT)组建了一支由科学家和工程师组成的多学科团队,他们在基础研究和转化研究方面取得了成功。在过去的十年中,该团队对肿瘤中转运障碍的性质提供了前所未有的见解(Nature Reviews Cancer,2002)。这些令人兴奋的科学发现来自活体成像的创新(Nature Medicine,1997,2001,2003,2004),利用分子工具和量子点技术(Nature Medicine,2005),以及独特的体外,体内和数学模型的开发(PNAS,1998,JCO,2006)。迄今为止,我们的发现已经导致了改善肿瘤药物递送的新策略(Science,2005)。开发核心由M。Bawendi(量子点的早期先驱)和D.麻省理工学院的诺塞拉是这个BRP的基石。他们将开发新的量子点(量子点)结构,生物传感器和免疫偶联物,这些不仅是BRP中所有三个项目所必需的,而且通过创建化学和形态环境的“智能”量子点探针,为基于量子点的生物成像提供了新的方向。在项目1中,由D. Yumura和L.我们的目标是开发纳米颗粒的“设计规则”,并应用这些规则制造“智能”纳米颗粒,通过改变它们的大小和电荷,可以绕过肿瘤屏障。在由R.K.Jain领导的项目2中,我们试图用新型的基于生物传感器的生物传感器来绘制肿瘤的代谢微环境,并改善pH敏感的化疗和氧敏感的放射治疗。在项目3中,由D.杜达和Y. Boucher博士,我们利用多重免疫结合物探针和生物传感器的能力来开发体内多细胞分子和功能表型分析技术,并建立一种基于靶向肿瘤基质细胞的新型治疗策略。三个项目、两个开发核心和四个科学核心之间的高水平科学互动是BRP的主要优势-项目和核心领导人的联合出版物中有记录。每个项目都将依赖于核心A提供的多光子显微镜、数学建模和统计支持;核心B提供的尖端分子、细胞和组织学专业知识;核心C提供的一流手术和动物支持;以及核心D提供的行政支持。我们还拥有资源和临床合作者,可以随时将我们的科学发现用于临床试验(Nature Medicine,2004,Cancer Cell,2007)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(12)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rakesh K. Jain其他文献
In vitro and in vivo quantification of adhesion between leukocytes and vascular endothelium.
白细胞和血管内皮之间粘附的体外和体内定量。
- DOI:
10.1385/0-89603-516-6:553 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Rakesh K. Jain;L. Munn;D. Fukumura;R. Melder - 通讯作者:
R. Melder
Leveraging insights from cancer to improve tuberculosis therapy
利用癌症研究的见解来改进结核病治疗
- DOI:
10.1016/j.molmed.2024.07.011 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:13.800
- 作者:
Meenal Datta;Laura E. Via;Véronique Dartois;Lei Xu;Clifton E. Barry;Rakesh K. Jain - 通讯作者:
Rakesh K. Jain
Xanthan gum: an economical substitute for agar in plant tissue culture media
黄原胶:植物组织培养基中琼脂的经济替代品
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:6.2
- 作者:
Rakesh K. Jain;S. Babbar - 通讯作者:
S. Babbar
Anaerobes in bacterial vaginosis.
细菌性阴道病中的厌氧菌。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:1.6
- 作者:
A. Aggarwal;P. Devi;Rakesh K. Jain - 通讯作者:
Rakesh K. Jain
Using mathematical modelling and AI to improve delivery and efficacy of therapies in cancer
利用数学建模和人工智能提高癌症治疗的递送和疗效
- DOI:
10.1038/s41568-025-00796-w - 发表时间:
2025-02-19 - 期刊:
- 影响因子:66.800
- 作者:
Constantinos Harkos;Andreas G. Hadjigeorgiou;Chrysovalantis Voutouri;Ashwin S. Kumar;Triantafyllos Stylianopoulos;Rakesh K. Jain - 通讯作者:
Rakesh K. Jain
Rakesh K. Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rakesh K. Jain', 18)}}的其他基金
Reprogramming the tumormicroenvironment to improve immunotherapy of glioblastoma
重新编程肿瘤微环境以改善胶质母细胞瘤的免疫治疗
- 批准号:
10595045 - 财政年份:2022
- 资助金额:
$ 169.29万 - 项目类别:
Reprogramming the tumormicroenvironment to improve immunotherapy of glioblastoma
重新编程肿瘤微环境以改善胶质母细胞瘤的免疫治疗
- 批准号:
10417806 - 财政年份:2022
- 资助金额:
$ 169.29万 - 项目类别:
Improving treatment of HER2+ breast cancer brain metastasis by targeting lipid metabolism
通过靶向脂质代谢改善 HER2 乳腺癌脑转移的治疗
- 批准号:
10185953 - 财政年份:2021
- 资助金额:
$ 169.29万 - 项目类别:
Improving treatment of HER2+ breast cancer brain metastasis by targeting lipid metabolism
通过靶向脂质代谢改善 HER2 乳腺癌脑转移的治疗
- 批准号:
10397627 - 财政年份:2021
- 资助金额:
$ 169.29万 - 项目类别:
Improving treatment of HER2+ breast cancer brain metastasis by targeting lipid metabolism
通过靶向脂质代谢改善 HER2 乳腺癌脑转移的治疗
- 批准号:
10620649 - 财政年份:2021
- 资助金额:
$ 169.29万 - 项目类别:
Targeting physical stress-driven mechanisms to overcome glioblastoma treatment resistance
针对物理压力驱动机制克服胶质母细胞瘤治疗耐药性
- 批准号:
10696949 - 财政年份:2021
- 资助金额:
$ 169.29万 - 项目类别:
Targeting physical stress-driven mechanisms to overcome glioblastoma treatment resistance
针对物理压力驱动机制克服胶质母细胞瘤治疗耐药性
- 批准号:
10273309 - 财政年份:2021
- 资助金额:
$ 169.29万 - 项目类别:
Improving treatment of brain metastases from HER2-positive breast cancer
改善 HER2 阳性乳腺癌脑转移的治疗
- 批准号:
8864389 - 财政年份:2015
- 资助金额:
$ 169.29万 - 项目类别:
Dissecting Pediatric Brain Tumor Microenvironment to Improve Treatment
剖析小儿脑肿瘤微环境以改善治疗
- 批准号:
9334783 - 财政年份:2015
- 资助金额:
$ 169.29万 - 项目类别:
Dissecting Pediatric Brain Tumor Microenvironment to Improve Treatment
剖析小儿脑肿瘤微环境以改善治疗
- 批准号:
9766197 - 财政年份:2015
- 资助金额:
$ 169.29万 - 项目类别: