Quality Control and Training Software for DXA-Based Bone Densitometry

基于 DXA 的骨密度测定的质量控制和培训软件

基本信息

  • 批准号:
    7481694
  • 负责人:
  • 金额:
    $ 6.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-09 至 2008-11-08
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Bone health is an increasingly important public health issue. Accurate and cost-effective tools are urgently needed to face the unprecedented medical challenges of a rapidly increasing elderly population. The dual energy X-ray absorptiometry (DXA) scan remains the gold standard for bone density imaging in the diagnosis and treatment of osteoporosis-its noninvasive, quantitative imaging process combines cost effectiveness and diagnostic capability. Yet as more physicians offer DXA screening tests, a lack of experience and training can produce inaccurate or biased testing. In 2003, Cardea Technology began marketing BoneStation(tm) a browser- based data storage, reporting and workflow system whose unique distributed architecture is fully integrated with DXA's quantitative modality. This grant project aims to explore a quality control module to provide all bone health physicians a tool to maximize accuracy of bone density measurements. Cardea technology's software architects propose to test feasibility of developing the add-on module, DXA-Pro(tm) (patent pending), by working in consultation with physicians and a clinical statistician from the Bone Density Center at Massachusetts General Hospital in Boston and two other nationally prominent specialists. The principal resource is a large de-identified database drawn from a local population. The module would offer computer-assisted alert-style detection of patterns and anomalies in serial DXA tests, based on quantitative assessments and algorithms that capture the thought processes of experienced bone density practitioners. The experimental design consists of defining up to a half-dozen algorithms aimed at detecting common measurement errors and physiological anomalies. Blinded experimental controls will serve to validate: (1) the algorithm(s) will be applied to the control database and a smaller de-identified database from a closely proximate population in a less-experienced bone density center; and (2) a randomized blinded sampling of DXA scans identified as normative or anomalous will be reviewed by the consulting physicians. The statistics-based approach offers the opportunity for continuous refinement: as evidence from clinical applications grows, the software's algorithm(s) can adjust to increase sensitivity and usage. The module will be designed to: (1) interactively train physicians to recognize problems in DXA scans; (2) ensure accurate test interpretation; (3) promote a uniform standard of expertise among physicians of any skill level or training; (4) enhance DXA's cost-effective diagnostic capability; and (5) provide a long-term benefit to patients via an accurate diagnosis of their current bone health. The multiple advantages of DXA-Pro(tm) (patent pending) and BoneStation(tm) suggest this unique product could have immediate impact at a national scale by enabling small bone health clinics to rapidly achieve the required level of expertise in bone density testing. This SBIR Phase I grant application proposes to meet the crucial market need for accurate diagnosis of osteoporosis and bone health with an innovative statistics-based technique that holds the promise of wider commercial applications in bone density testing and other healthcare technologies. PUBLIC HEALTH RELEVANCE Bone health should be a normal part of the healthy aging process, yet many otherwise healthy people are subject to osteoporosis and the disabling consequences of fractures. Accurate and cost-effective tools are needed to meet the unprecedented medical challenge of understanding and treating disease conditions associated with a rapidly increasing elderly population. Cardea Technology Inc proposes to develop a key software program that will help maximize every bone health physician's ability to use DXA imaging accurately when assessing the individual patient's total bone health.
描述(申请人提供):骨骼健康是一个日益重要的公共卫生问题。迫切需要准确和具有成本效益的工具来面对迅速增加的老年人口所带来的前所未有的医疗挑战。双能x线吸收仪(DXA)扫描仍然是骨质疏松症诊断和治疗中骨密度成像的金标准,它的无创、定量成像过程结合了成本效益和诊断能力。然而,随着越来越多的医生提供DXA筛查测试,缺乏经验和培训可能会产生不准确或有偏见的测试。2003年,Cardea Technology开始销售BoneStation(tm),这是一个基于浏览器的数据存储、报告和工作流系统,其独特的分布式架构与DXA的定量模式完全集成。本项目旨在探索一种质量控制模块,为所有骨骼健康医生提供一种工具,以最大限度地提高骨密度测量的准确性。Cardea技术的软件架构师提议,通过与波士顿马萨诸塞州总医院骨密度中心的医生和临床统计学家以及其他两位全国知名专家协商,测试开发附加模块DXA-Pro(tm)(正在申请专利)的可行性。主要资源是从当地人口中抽取的大型去标识数据库。该模块将在定量评估和算法的基础上,对连续DXA测试中的模式和异常进行计算机辅助警报式检测,这些定量评估和算法可以捕捉经验丰富的骨密度从业者的思维过程。实验设计包括定义多达六种算法,旨在检测常见的测量误差和生理异常。盲法实验控制将用于验证:(1)算法将应用于对照数据库和一个较小的去识别数据库,该数据库来自经验较少的骨密度中心的接近人群;(2)由咨询医生对确定为正常或异常的DXA扫描进行随机盲法抽样。基于统计的方法为持续改进提供了机会:随着临床应用证据的增加,软件的算法可以进行调整,以提高灵敏度和使用率。该模块将被设计为:(1)交互式培训医生识别DXA扫描中的问题;(2)保证考试口译准确;(三)在各种技术水平和培训的医生中促进统一的专业知识标准;(4)增强DXA具有成本效益的诊断能力;(5)通过对患者当前骨骼健康状况的准确诊断,为患者提供长期的益处。DXA-Pro(tm)(专利申请中)和BoneStation(tm)的多重优势表明,这种独特的产品可以在全国范围内立即产生影响,使小型骨骼健康诊所能够迅速达到骨密度测试所需的专业水平。这项SBIR I期拨款申请旨在满足市场对骨质疏松症和骨骼健康准确诊断的关键需求,这项基于统计的创新技术有望在骨密度测试和其他医疗技术中得到更广泛的商业应用。骨骼健康应该是健康衰老过程的一个正常部分,然而许多其他方面健康的人受到骨质疏松症和骨折致残后果的影响。需要准确和具有成本效益的工具来应对前所未有的医疗挑战,即了解和治疗与迅速增加的老年人口相关的疾病。Cardea技术公司建议开发一个关键的软件程序,以帮助最大限度地提高每位骨骼健康医生在评估个体患者整体骨骼健康时准确使用DXA成像的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael DiChiappari其他文献

Michael DiChiappari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了