REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
基本信息
- 批准号:7723173
- 负责人:
- 金额:$ 0.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmino Acid SequenceAmino AcidsComputer Retrieval of Information on Scientific Projects DatabaseDataDistantDrug DesignEnvironmentFailureFree EnergyFundingGenerationsGoalsGrantInstitutionLaboratoriesLigandsMethodologyModelingMolecular ConformationPharmaceutical PreparationsPlant RootsProteinsRelative (related person)ResearchResearch PersonnelResolutionResourcesScreening procedureShapesSolventsSourceStructureUnited States National Institutes of HealthVertebral columnimprovedmolecular mechanicsprotein structureprotein structure prediction
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
A major challenge in protein structure prediction is the refinement of low-resolution predicted models (e.g. those with a backbone root-mean-square-deviation, RMSD, from the native structure of about 5 ), to high-resolution all-atom structures with a RMSD of less than 2 . To date, there have only been a few documented instances where structures at atomic detail have improved relative to their initial starting conformation. Even if low-resolution models with a RMSD from the native structure of about 5 were available for a target protein, the refinement to a high-resolution structure with a RMSD of less than 2 can be difficult to achieve. Given the increasing ability of protein structure prediction algorithms, such as TASSER developed in our laboratory, to assemble approximately correct native structures, the effort should be made to refine such models so that they can be used for ligand screening as well as more general types of functional annotation. High-resolution structures are useful in detailed studies of mechanisms as well as in the design of drug molecules in which the (atomic) local environment of the small (drug) molecule requires accurate characterization. While significant progress has been made in the generation of low-resolution structures and their selection, the final step of structural adjustment still poses significant difficulties. Despite considerable effort, structure refinement from proteins having near native structures has proven to be very difficult, especially if all atom models and atomic potentials are used. It is necessary for successful refinement of low-resolution models that the force field recognizes the native structure of a protein as the lowest free energy minimum, and it shows correlation between energy and the native-likeness of decoy structures. Current all-atom force fields in many cases fail to recognize the native structure as the lowest free energy minimum and energy of the decoys do not monotonically decreases as the native conformation is approached. The source of this inaccuracy may be: a). the mathematical form of the potential b). lack of important physical interactions in the potential, e.g. polarization or correlation effects (many body interactions), or c). inadequate parameterization of the force field, which does not include sufficient information about the global shape of the energy landscape. Most all-atom force fields rely on the assumption that the conformation of each residue is energetically insensitive to the conformation of its neighbors (i.e. they do not contain explicit correlation terms for the backbone conformation (torsional angles) of the neighboring residues). However, there are experimental and statistical data from solved protein structures, showing that the backbone conformation of a residue in the amino acid chain is correlated with the conformation and identity of the neighboring residues. These data reflect the influence of the environment of the protein, where the correlations of local effects with solvent and non-local effects are non-separable. Therefore, it is important to determine to what extent the local interactions (between residues close in amino acid sequence) alter the accessible conformational space and how much of this effect originates from non-local interactions (between residues close in space but distant in sequence) and solvation, and whether current extant force fields, that do not explicitly include backbone correlation and polarization can reproduce these effects. Conceivably, ignoring some important interactions could result in inaccuracies of the relative conformational energies thereby affecting the ability to identify the native structure as the lowest energy minimum. However, if the functional form of current molecular mechanics potentials is mathematically correct, then the failure to recognize the native structure as the global energy minimum could arise from incorrect details of the force field parameters that should be fixable by reparameterization. The long-term goal of this project is to evaluate and improve accuracy of current all-atom force fields and develop methodology to refine the low-resolution protein models, resulted from the protein structure prediction approaches developed by Skolnick and coworkers, to high-resolution structures in all-atom representation.
这个子项目是众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY SKOLNICK其他文献
JEFFREY SKOLNICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY SKOLNICK', 18)}}的其他基金
Purchase of a GPU cluster for deep learning applications in protein-protein interaction and supercomplex prediction and biochemical literature annotation.
购买 GPU 集群,用于蛋白质-蛋白质相互作用、超复杂预测和生化文献注释中的深度学习应用。
- 批准号:
10797550 - 财政年份:2016
- 资助金额:
$ 0.05万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10399478 - 财政年份:2016
- 资助金额:
$ 0.05万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9926899 - 财政年份:2016
- 资助金额:
$ 0.05万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9270553 - 财政年份:2016
- 资助金额:
$ 0.05万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10613959 - 财政年份:2016
- 资助金额:
$ 0.05万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8474727 - 财政年份:2012
- 资助金额:
$ 0.05万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8285272 - 财政年份:2012
- 资助金额:
$ 0.05万 - 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
- 批准号:
7957342 - 财政年份:2009
- 资助金额:
$ 0.05万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7601397 - 财政年份:2007
- 资助金额:
$ 0.05万 - 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
- 批准号:
7602259 - 财政年份:2007
- 资助金额:
$ 0.05万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.05万 - 项目类别:
Continuing Grant














{{item.name}}会员




