Predicting cell deformation from body level mechanical loads
根据身体机械负荷预测细胞变形
基本信息
- 批准号:7689057
- 负责人:
- 金额:$ 51.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAreaAutomobile DrivingBiologicalBiomechanicsCartilageCell CommunicationCell physiologyCellsCellular StressCellular StructuresChondrocytesClinicalCommunitiesComputer SimulationCouplingDataDegenerative DisorderDegenerative polyarthritisDevelopmentEnvironmentEsthesiaEtiologyExerciseExtracellular MatrixFailureFibroblastsFoundationsFrequenciesFunding OpportunitiesFutureGoalsGrowthHealedHealthcareHomeostasisHumanHuman bodyIn VitroInjuryInternationalInterventionInvestigationJointsKneeKnee jointKnowledgeLeadLigamentsLinkMapsMeasurableMeasurementMeasuresMechanicsMeniscus structure of jointMethodologyModelingMovementMusculoskeletalMusculoskeletal SystemNatural regenerationNeurologicOperative Surgical ProceduresOrganOrthopedicsOutcomePathologyPathway interactionsPatternPhysical activityPhysiciansPreparationPreventionPreventiveProcessPropertyProtocols documentationPublic HealthRegulationRehabilitation therapyResearchResearch ActivityResearch PersonnelResearch ProposalsResolutionRiskRisk AssessmentRuptureSchemeSimulateStressStructureSystemTestingTherapeuticTherapeutic InterventionTissue SampleTissuesTranslational ResearchTranslationsTreatment ProtocolsUnited StatesValidationcell injuryclinical applicationcomputerized toolsdata modelingdesignexperiencehealingimaging modalityinterestknowledge basemeetingsmodels and simulationmulti-scale modelingneuromuscularpublic health relevanceresponsesimulationsoft tissuesuccesstool
项目摘要
DESCRIPTION (provided by applicant): Project Summary Cells of the musculoskeletal system are known to have a biological response to deformation. Deformations, when abnormal in magnitude, duration, and/or frequency content, can lead to cell damage and possible disruption in homeostasis of the extracellular matrix. These mechanisms can be studied in an isolated fashion but connecting mechanical cellular response to organ level mechanics and human movement requires a multiscale approach. At the organ level, physicians perform surgical procedures, investigators try to understand risk of injury, and clinicians prescribe preventive and therapeutic interventions. Many of these operations are aimed at management and prevention of cell damage, and to associate joint level mechanical markers of failure to cell level failure mechanisms. Through human movement, one explores neuromuscular control mechanisms and the influence of physical activity on musculoskeletal tissue properties. At a lower level, mechanical sensation of cell deformations regulate movement control. Physical rehabilitation and exercise regimens are prescribed to promote tissue healing and/or strengthening through cellular regeneration. The knowledge of the mechanical pathway, through which the body level loads are distributed between organs, then within the tissues and further along the extracellular matrix and the cells, is critical for the success of various interventions. However, this information is not established. The goal of this research proposal is to portray that prediction of cell deformations from loads acting on the human body, therefore a clear depiction of the mechanical pathway, is possible, if a multiscale simulation approach is used. Multiresolution models of the knee joint, representative of joint, tissue and cell structure and mechanics, will be developed for this purpose. The knee endures high rates of traumatic injury to its soft tissue structures and it is predominantly affected by osteoarthritis, chronically induced by abnormalities in mechanical loading or how it is transferred to the cartilage. Through multiscale mechanical coupling of these models, a map of cellular deformation in cartilage, ligaments and menisci under a variety of tibiofemoral joint loads will be obtained. Comprehensive mechanical testing at joint, tissue and cell levels will be conducted for parameter estimation and validation, including in vitro loading of the knee joint representative of lifelike loading scenarios. In addition, imaging modalities will capture joint and tissue anatomy, and spatial and deformation related information from cell and extracellular matrix. Advanced computational approaches will be used to obtain model properties and to facilitate multiscale simulations. The approach will combine the expertise of many investigators experienced in biomechanical modeling and experimentation at various biological scales, some with clinical expertise. In future, the research team will utilize this platform to establish the relationship between the structural and loading state of the knee and chondrocyte stresses to explore potential mechanisms of cartilage degeneration. Through documented dissemination of data and models, simulations of other pathologies and translation of the methodology to other organs can be carried out by any interested investigator. PUBLIC HEALTH RELEVANCE: Project Narrative Possibility to predict cell deformations promotes a full understanding of the mechanical load transfer schemes from organ to tissue to cell, particularly when the loads acting on the human body are measurable by readily available experimental platforms. The protocols can identify structural and mechanical causalities of the pathologies associated with these mechanisms, and provide subject-specific assessment of the risk of mechanically induced cell damage. In long term, the proposed multiscale modeling platform will advance public health care through the design of surgical, therapeutic and rehabilitative interventions directly targeted at cell mechanics in order to restore mechanical function at various biological scales.
描述(由申请人提供):项目概述已知肌肉骨骼系统的细胞对变形有生物学反应。当变形的幅度、持续时间和/或频率含量异常时,可导致细胞损伤和细胞外基质稳态的可能破坏。这些机制可以以孤立的方式进行研究,但将机械细胞反应与器官水平力学和人体运动联系起来需要多尺度方法。在器官层面,医生进行外科手术,研究人员试图了解损伤的风险,临床医生规定预防和治疗干预措施。这些操作中的许多操作旨在管理和预防细胞损伤,并将关节水平的失效机械标记与细胞水平的失效机制相关联。通过人体运动,探索神经肌肉控制机制和身体活动对肌肉骨骼组织特性的影响。在较低的水平上,细胞变形的机械感觉调节运动控制。身体康复和锻炼方案是为了促进组织愈合和/或通过细胞再生加强。身体水平负荷通过机械途径在器官之间、然后在组织内并进一步沿着细胞外基质和细胞分布,机械途径的知识对于各种干预的成功至关重要。然而,这一信息尚未确立。本研究提案的目标是描绘细胞变形的预测作用在人体上的负载,因此,一个明确的描述的机械路径,是可能的,如果使用多尺度模拟方法。将为此目的开发膝关节的多分辨率模型,代表关节、组织和细胞结构和力学。膝关节承受着对其软组织结构的高比率创伤性损伤,并且其主要受到骨关节炎的影响,骨关节炎是由机械负荷异常或其如何转移到软骨而慢性诱发的。通过这些模型的多尺度力学耦合,将获得在各种胫股关节载荷下软骨、韧带和骨小梁中的细胞变形图。将在关节、组织和细胞水平进行全面的力学测试,以进行参数估计和确认,包括代表逼真负载场景的膝关节体外负载。此外,成像模式将捕获关节和组织解剖结构,以及来自细胞和细胞外基质的空间和变形相关信息。先进的计算方法将被用来获得模型属性,并促进多尺度模拟。该方法将结合联合收割机的专业知识,许多研究人员在生物力学建模和实验经验丰富,在各种生物尺度,一些临床专业知识。未来,研究团队将利用这个平台建立膝关节的结构和负荷状态与软骨细胞应力之间的关系,以探索软骨退变的潜在机制。通过记录数据和模型的传播,任何感兴趣的研究者都可以进行其他病理学的模拟和方法学到其他器官的翻译。公共卫生相关性:预测细胞变形的可能性促进了对从器官到组织再到细胞的机械载荷传递方案的充分理解,特别是当作用在人体上的载荷可以通过现成的实验平台测量时。该方案可以识别与这些机制相关的病理的结构和机械因果关系,并提供机械诱导细胞损伤风险的受试者特异性评估。从长远来看,拟议的多尺度建模平台将通过直接针对细胞力学的手术,治疗和康复干预措施的设计来促进公共卫生保健,以恢复各种生物尺度的机械功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AHMET ERDEMIR其他文献
AHMET ERDEMIR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AHMET ERDEMIR', 18)}}的其他基金
Reproducibility in simulation-based prediction of natural knee mechanics
基于模拟的自然膝关节力学预测的可重复性
- 批准号:
10655984 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Software for Practical Annotation and Exchange of Virtual Anatomy
用于虚拟解剖学实用注释和交换的软件
- 批准号:
10159899 - 财政年份:2019
- 资助金额:
$ 51.27万 - 项目类别:
Software for Practical Annotation and Exchange of Virtual Anatomy
用于虚拟解剖学实用注释和交换的软件
- 批准号:
10448473 - 财政年份:2019
- 资助金额:
$ 51.27万 - 项目类别:
Reproducibility in simulation-based prediction of natural knee mechanics
基于模拟的自然膝关节力学预测的可重复性
- 批准号:
10004617 - 财政年份:2017
- 资助金额:
$ 51.27万 - 项目类别:
Open Knee(s): Virtual Biomechanical Representations of the Knee Joint
开放膝关节:膝关节的虚拟生物力学表示
- 批准号:
8852142 - 财政年份:2013
- 资助金额:
$ 51.27万 - 项目类别:
Open Knee(s): Virtual Biomechanical Representations of the Knee Joint
开放膝关节:膝关节的虚拟生物力学表示
- 批准号:
9069487 - 财政年份:2013
- 资助金额:
$ 51.27万 - 项目类别:
Open Knee(s): Virtual Biomechanical Representations of the Knee Joint
开放膝关节:膝关节的虚拟生物力学表示
- 批准号:
8420044 - 财政年份:2013
- 资助金额:
$ 51.27万 - 项目类别:
Open Knee(s): Virtual Biomechanical Representations of the Knee Joint
开放膝关节:膝关节的虚拟生物力学表示
- 批准号:
8735169 - 财政年份:2013
- 资助金额:
$ 51.27万 - 项目类别:
Predicting cell deformation from body level mechanical loads
根据身体机械负荷预测细胞变形
- 批准号:
8317728 - 财政年份:2009
- 资助金额:
$ 51.27万 - 项目类别:
Predicting cell deformation from body level mechanical loads
根据身体机械负荷预测细胞变形
- 批准号:
7900555 - 财政年份:2009
- 资助金额:
$ 51.27万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Studentship