Ultrasound Imaging of Breast by Use of a Hemispheric Array and Inverse Scattering
使用半球阵列和逆散射对乳房进行超声成像
基本信息
- 批准号:7698526
- 负责人:
- 金额:$ 93.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAlgorithmsAnatomyArchitectureBiopsyBreastBreast Cancer DetectionBreast Cancer TreatmentCharacteristicsClinicalCollectionComputersDataDetectionDevelopmentDiagnosisDimensionsDiseaseElectronicsElementsFoundationsFourier TransformFrequenciesImageImage AnalysisImplantInvestigationMalignant NeoplasmsMammographyMapsMeasurementMeasuresMethodsModelingMonitorMonitoring for RecurrenceMorphologic artifactsMotionOperative Surgical ProceduresOutputPatientsPerformancePhysiologic pulseProcessPropertyRecurrenceResearch PersonnelResearch Project GrantsResidual stateResolutionResourcesRiskScheduleSignal TransductionSpeedSystemTechnologyTestingThree-Dimensional ImagingTimeTissuesTransducersUltrasonic waveUltrasonographyVariantWeightattenuationbaseclinical applicationcomputing resourcescostimage reconstructionimprovedin vivoinstrumentmalignant breast neoplasmmillimeternovelpublic health relevancequantitative ultrasoundresponsesoundsuccesssystem architecturetime intervaltransmission processtwo-dimensionalvolunteer
项目摘要
DESCRIPTION (provided by applicant): The objective of this project is to form high-resolution speckle-free quantitative ultrasound images throughout the volume of the breast in vivo by using a hemispheric transducer array for measurements and inverse scattering for image reconstruction. Achievement of this objective will show the clinical feasibility of using non-- ionizing ultrasound imaging to screen for breast cancer without the use of ionizing x-rays and will provide a foundation for risk-free examination of the breast for cancer detection. The proposed methods will overcome x- ray mammography limitations such as low resolution of contrast in dense breasts, compression-induced deformation of anatomy and discomfort in patients, and poor imaging of breasts with implants. Success would ultimately change the way screening for breast cancer is performed and significantly improve detection, diagnosis, and monitoring for recurrence or response to treatment of breast cancer. In the proposed system, ultrasound waves are transmitted into the breast, waves scattered by the breast are received, and the measurements of the scattered waves are stored for subsequent off-line reconstruction of images. The envisioned parallel architecture of the transmit and receive channels associated with each transducer element permits the collection of scattering from the in vivo breast during a short time, e.g., about two seconds, to avoid image-degrading motion artifacts. The planned use of off-line processing by available computing resources for image reconstruction circumvents the need to acquire and configure computer facilities. The hemispheric array is comprised of multiple planar facets so that conventional flat-wafer fabrication technology can be used to implement the array. The system has transmit electronics, receive electronics, and a transmit-receive switch associated with each element. A control unit communicates with the electronics. Image reconstruction begins by using measured pulse waveforms to estimate the gross properties (i.e., contour, average speed of sound, and average slope of attenuation) of the breast. From these properties, background scattering is determined and subtracted from the measured scattering to obtain residual scattering linearly related to tissue variations. The scattering measurements are in the near field but the coefficients of the temporal Fourier transform of the scattered signals emulate far field measurements in local regions that fill a hemisphere of Fourier spatial-- frequency space with components of the spatial Fourier transform of the local tissue variations. These measurements are extrapolated to obtain values of the Fourier spatial-frequency components in the opposite hemisphere. The entire sphere of spatial-frequency components is used to form weighted products of fields that are based on the initial estimate of breast characteristics and are then iteratively refined. The resulting images show sound speed and attenuation slope throughout the breast volume.
PUBLIC HEALTH RELEVANCE: The objective of this project is to form significantly improved ultrasonic images throughout the volume of the breast in vivo by using a novel imaging system. Achievement of this objective will show the clinical feasibility of using non-ionizing ultrasound imaging to screen for breast cancer without the use of ionizing x-rays, provide a foundation for risk-free examination of the breast for cancer detection, and overcome x-ray mammography limitations such as low resolution of contrast in dense breast, compression induced deformation of anatomy and discomfort in patients, and poor imaging of breasts with implants. Success would ultimately change the way screening for breast cancer is performed and significantly improve detection, diagnosis, and monitoring for recurrence or response to treatment of breast cancer.
描述(由申请人提供):本项目的目的是通过使用半球形换能器阵列进行测量和逆散射进行图像重建,在体内整个乳房体积内形成高分辨率无斑点定量超声图像。这一目标的实现将表明使用非电离超声成像在不使用电离X射线的情况下筛查乳腺癌的临床可行性,并将为乳腺癌检测的无风险检查奠定基础。所提出的方法将克服X射线乳房摄影术的局限性,诸如致密乳房中的对比度的低分辨率、患者中的解剖结构的压缩引起的变形和不适以及具有植入物的乳房的不良成像。成功将最终改变乳腺癌筛查的方式,并显着改善检测,诊断和监测复发或对乳腺癌治疗的反应。在所提出的系统中,超声波被发射到乳房中,由乳房散射的波被接收,并且散射波的测量值被存储用于随后的离线图像重建。与每个换能器元件相关联的发射和接收通道的所设想的并行架构允许在短时间内收集来自体内乳房的散射,例如,大约两秒,以避免图像退化的运动伪影。计划利用现有的计算资源进行离线处理,以进行图像重建,从而避免了购置和配置计算机设施的需要。该半球形阵列由多个平面小面组成,使得传统的平晶片制造技术可以用于实现该阵列。该系统具有发射电子设备、接收电子设备和与每个元件相关联的发射-接收开关。控制单元与电子设备通信。图像重建开始于使用测量的脉搏波形来估计总体特性(即,轮廓、平均声速和平均衰减斜率)。根据这些特性,确定背景散射,并从测量的散射中减去背景散射,以获得与组织变化线性相关的残余散射。散射测量是在近场中,但是散射信号的时间傅里叶变换的系数模拟局部区域中的远场测量,该局部区域用局部组织变化的空间傅里叶变换的分量填充傅里叶空间-频率空间的半球。这些测量值被外推以获得相对半球中的傅立叶空间频率分量的值。空间频率分量的整个球体用于形成基于乳房特征的初始估计的场的加权乘积,然后迭代地细化。所得到的图像显示了整个乳房体积的声速和衰减斜率。
公共卫生关系:本项目的目的是通过使用一种新型的成像系统,在体内的乳房体积中形成显着改善的超声图像。这一目标的实现将显示在不使用电离X射线的情况下使用非电离超声成像来筛查乳腺癌的临床可行性,为乳腺癌检测的无风险检查提供基础,并克服X射线乳房摄影术的局限性,例如致密乳腺中的对比度分辨率低、压缩引起的解剖结构变形和患者不适,和乳房植入物的成像不良。成功将最终改变乳腺癌筛查的方式,并显着改善检测,诊断和监测复发或对乳腺癌治疗的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT C WAAG其他文献
ROBERT C WAAG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT C WAAG', 18)}}的其他基金
Ultrasound Imaging of Breast by Use of a Hemispheric Array and Inverse Scattering
使用半球阵列和逆散射对乳房进行超声成像
- 批准号:
8977104 - 财政年份:2015
- 资助金额:
$ 93.87万 - 项目类别:
Ultrasound Imaging of Breast by Use of a Hemispheric Array and Inverse Scattering
使用半球阵列和逆散射对乳房进行超声成像
- 批准号:
8545500 - 财政年份:2012
- 资助金额:
$ 93.87万 - 项目类别:
Estimation and Correction of Ultrasound Beam Aberration Caused by Breast
乳腺引起的超声束像差的估计与校正
- 批准号:
7985875 - 财政年份:2010
- 资助金额:
$ 93.87万 - 项目类别:
Estimation and Correction of Ultrasound Beam Aberration Caused by Breast
乳腺引起的超声束像差的估计与校正
- 批准号:
8279211 - 财政年份:2010
- 资助金额:
$ 93.87万 - 项目类别:
Estimation and Correction of Ultrasound Beam Aberration Caused by Breast
乳腺引起的超声束像差的估计与校正
- 批准号:
8470094 - 财政年份:2010
- 资助金额:
$ 93.87万 - 项目类别:
Estimation and Correction of Ultrasound Beam Aberration Caused by Breast
乳腺引起的超声束像差的估计与校正
- 批准号:
8115955 - 财政年份:2010
- 资助金额:
$ 93.87万 - 项目类别:
Ultrasound Imaging of Breast by Use of a Hemispheric Array and Inverse Scattering
使用半球阵列和逆散射对乳房进行超声成像
- 批准号:
8307744 - 财政年份:2009
- 资助金额:
$ 93.87万 - 项目类别:
ULTRASOUND SCATTERING FROM A DISTRIBUTION OF SPHERES IN A TISSUE-MIMICKING PHAN
组织模拟 PHAN 中球体分布的超声散射
- 批准号:
7956143 - 财政年份:2009
- 资助金额:
$ 93.87万 - 项目类别:
Ultrasound Imaging of Breast by Use of a Hemispheric Array and Inverse Scattering
使用半球阵列和逆散射对乳房进行超声成像
- 批准号:
8111970 - 财政年份:2009
- 资助金额:
$ 93.87万 - 项目类别:
Ultrasound Imaging of Breast by Use of a Hemispheric Array and Inverse Scattering
使用半球阵列和逆散射对乳房进行超声成像
- 批准号:
7901359 - 财政年份:2009
- 资助金额:
$ 93.87万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 93.87万 - 项目类别:
Research Grant