Discovery of inhibitors of the lipopolysaccharide synthesis pathway enzymes LpxA

脂多糖合成途径酶 LpxA 抑制剂的发现

基本信息

  • 批准号:
    7912694
  • 负责人:
  • 金额:
    $ 45.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-05 至 2012-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Bacterial resistance to antibiotics has been an evolving problem since the dawn of the antibiotics era, requiring consistent scientific advances over the years in antibiotic discovery, epidemiological surveillance and infection control techniques to overcome the then-current clinical problem. One way to address resistance mechanisms is to attack the bacteria on many different fronts as has been done in the anti-viral field with HIV. However, unlike in the antiviral field, most commercial antibiotics were discovered many years ago and little advancement has been made in the discovery of novel therapeutics. This is even after the dawn of the genomics era when complete bacterial genomes were sequenced and unique enzymatic pathways identified. A multitude of targets have been screened by high-throughput screening methods to no avail. Recently, the reason for this high failure rate has been analyzed and conclusions drawn that traditional HTS libraries, designed to fit all disease indications, do not possess the properties required for anti-bacterial agents. Retrospective analysis reveal that in general successful antibacterial agents are more polar and larger than other drug molecules, and in fact, do not fit the criteria used to build most large HTS collections. Rather than re-building HTS libraries for antibacterial research which would be a tremendous and costly undertaking, in this proposal, we will use another method, fragment-based lead discovery, where fragments of drugs are screened rather than intact molecules. Because the compounds are smaller, the libraries need not be large or costly to assemble. Furthermore, as we find compounds that bind to our target and begin to increase the size of the fragments, we can design in antibiotic-friendly chemical properties at the same time we are building in potency. We are focusing on the bacterial cell wall synthesis pathway in gram negative bacteria, targeting two proteins: LpxA and LpxD. Both proteins are essential and because the cell wall can invoke resistance to some antibiotics, inhibitors may not only be therapeutic agents as a mono-therapy but could be co-dosed with existing resistant antibiotics. PUBLIC HEALTH RELEVANCE: Bacterial resistance to antibiotics has been an evolving problem since the dawn of the antibiotics era, requiring consistent scientific advances over the years in antibiotic discovery, epidemiological surveillance and infection control techniques to overcome the then-current clinical problem. We are addressing resistance mechanisms by finding inhibitors of bacterial cell wall synthesis in gram negative bacteria. We are targeting two proteins in the pathway: LpxA and LpxD using the method of fragment- based lead discovery. Traditional modern drug discovery methods have been largely unsuccessful in identifying antibacterial compounds primarily because we have been looking in the wrong place (in chemical space). Chemical properties of successful antibiotics have been identified and will be adhered to through the course of this study.
描述(由申请人提供):自抗生素时代开始以来,细菌对抗生素的耐药性一直是一个不断发展的问题,需要多年来在抗生素发现、流行病学监测和感染控制技术方面取得一致的科学进展,以克服当时的临床问题。解决耐药机制的一种方法是在许多不同的战线上攻击细菌,就像在抗病毒领域对HIV所做的那样。然而,与抗病毒领域不同的是,大多数商业抗生素是多年前发现的,在发现新疗法方面几乎没有进展。这甚至是在基因组学时代的黎明之后,当时完整的细菌基因组被测序,独特的酶途径被鉴定。大量的目标已被筛选的高通量筛选方法是徒劳的。最近,已经分析了这种高失败率的原因,并得出结论,传统的HTS库,旨在适应所有疾病的适应症,不具备抗菌剂所需的属性。回顾性分析表明,一般来说,成功的抗菌剂比其他药物分子更极性和更大,事实上,不符合用于建立大多数大型HTS收集的标准。在这项提议中,我们将使用另一种方法,基于片段的先导发现,而不是重建HTS库用于抗菌研究,这将是一项巨大而昂贵的工作,其中筛选药物片段而不是完整的分子。因为化合物更小,所以库不需要很大或组装成本很高。此外,当我们发现与我们的目标结合的化合物并开始增加片段的大小时,我们可以在建立效力的同时设计对有害生物友好的化学性质。我们专注于革兰氏阴性菌中的细菌细胞壁合成途径,靶向两种蛋白质:LpxA和LpxD。这两种蛋白质都是必不可少的,因为细胞壁可以引起对某些抗生素的耐药性,抑制剂不仅可以作为单一疗法的治疗剂,而且可以与现有的耐药抗生素共同给药。 公共卫生关系:自抗生素时代到来以来,细菌对抗生素的耐药性一直是一个不断发展的问题,需要多年来在抗生素发现、流行病学监测和感染控制技术方面不断取得科学进步,以克服当时的临床问题。我们通过在革兰氏阴性菌中寻找细菌细胞壁合成的抑制剂来解决耐药机制。我们使用基于片段的先导发现方法靶向途径中的两个蛋白:LpxA和LpxD。传统的现代药物发现方法在鉴定抗菌化合物方面基本上是不成功的,主要是因为我们一直在错误的地方(化学空间)寻找。成功抗生素的化学性质已经确定,并将在本研究过程中坚持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vicki Nienaber其他文献

Vicki Nienaber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vicki Nienaber', 18)}}的其他基金

HOT-ROXS: An integrated platform for identifying activators of "non-druggable" targets using biophysical screening, x-ray solution scattering and high-throughput co-crystallization
HOT-ROXS:使用生物物理筛选、X 射线溶液散射和高通量共结晶来识别“非成药”靶点激活剂的集成平台
  • 批准号:
    9141039
  • 财政年份:
    2016
  • 资助金额:
    $ 45.63万
  • 项目类别:
Discovery of inhibitors of ALK for the treatment of cancer
发现用于治疗癌症的 ALK 抑制剂
  • 批准号:
    7747868
  • 财政年份:
    2009
  • 资助金额:
    $ 45.63万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 45.63万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了