Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
基本信息
- 批准号:7778897
- 负责人:
- 金额:$ 27.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-01 至 2012-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAffinityApoptosisBindingBiochemicalBiologicalBiological AssayBlood VesselsBrainCardiovascular DiseasesCaspaseCell physiologyCellsChemicalsComplexCysteineDevelopmentDiseaseEnzymesEventExcisionFluorescence SpectroscopyGenetic TranscriptionHealth Care CostsHumanHuman BiologyHypertensionImmunityIn VitroInflammationLeadMatrix MetalloproteinasesMediatingModificationMolecularMyocardialNeoplasm MetastasisNeuronsNitric OxideNitrosationOrganOxidesPathway interactionsPeptidesPerfusionPhysiologicalPhysiological ProcessesPhysiologyPlasmaPlatelet aggregationPlayPost-Translational Protein ProcessingProcessProtein IsoformsProteinsReactionReagentRelaxationReportingResearchRoleScreening procedureSepharoseSignal TransductionSignal Transduction PathwaySkinSoluble Guanylate CyclaseSpecificitySpectrum AnalysisSulfhydryl CompoundsSynaptic plasticityThioredoxinVasodilationWorkZinc Fingersbasecaspase-3cyclooxygenase 2effective therapyprotein functionprotein protein interactionresearch studysmall moleculetooltranscription factor
项目摘要
DESCRIPTION (provided by applicant): The controls governing S-nitrosation are unknown. In addition, the ramifications of S-nitrosation signaling are virtually unknown. Determining the molecular mechanism(s) that permits cells to achieve specificity in S-nitrosation reactions is the focus of this proposal. Nitric oxide (NO) plays integral roles in mammalian physiology including vasodilation, neuronal signaling, and immunity. NO affects cellular physiology by multiple pathways. The best studied pathway is through binding to the enzyme, soluble guanylate cyclase (sGC). The actions of NO that have been described cannot be completely accounted for when only considering sGC as a target. S-Nitrosation is one type of sGC-independent signaling and involves the post-translational modification of cysteine on proteins. In many cases, modification of a cysteine alters protein function. Processes similar to this are almost exclusively a regulated cellular event with a biological machinery in tight control. In vitro work has shown that when NO reacts with a protein, many cysteine thiols are modified. However, in a cellular context when NO was not added but produced by the cell itself, multiple modifications never occur. Additionally, NO is synthesized at very low concentrations such that without a control mechanism in place, protein modification would be highly inefficient. The most logical explanation for such disparities is that the in vitro experiment lacked the cellular components that confer specificity to the S-nitrosation reaction. Experimentally, this project will attempt to identify these components by using a variety of advanced tools such as: tailored affinity probes, inductively-coupled plasma spectroscopy, fluorescence spectroscopy, and recently developed S-nitrosation specific biochemical assays. Nitric oxide (NO) mediates blood vessel relaxation, complex aspects of myocardial function, perfusion and function of all major organs, synaptic plasticity in the brain, platelet aggregation, skin function, and numerous other physiological processes. Given the role of NO in human biology, a complete understanding of the molecular details involved in its signaling will have clear application to the understanding and treatment of a broad spectrum of diseases, such as hypertension and cardiovascular disease. This research can lead to the development of more effective therapies and, potentially, reduce health care costs.
描述(由申请人提供):控制S-硝化的控件未知。另外,S-硝化信号的后果实际上是未知的。确定允许细胞在S-硝化反应中达到特异性的分子机制是该提案的重点。一氧化氮(NO)在哺乳动物生理学中起着不可或缺的作用,包括血管舒张,神经元信号传导和免疫。没有多种途径会影响细胞生理。最好的研究途径是通过结合酶,可溶性鸟苷酸环化酶(SGC)。仅在将SGC视为目标时,就无法完全解释NO的行为。 S-硝化是一种独立于SGC的信号传导的一种类型,涉及半胱氨酸在蛋白质上的翻译后修饰。在许多情况下,半胱氨酸的修饰会改变蛋白质功能。与此类似的过程几乎完全是一个受调节的细胞事件,具有紧密控制的生物机械。体外工作表明,当没有与蛋白质反应时,许多半胱氨酸硫醇会被修饰。但是,在没有添加NO但由细胞本身产生的细胞环境中,从未发生过多次修改。此外,在非常低的浓度下合成不合理,因此如果没有控制机制,蛋白质的修饰将是高效的。这种差异的最合乎逻辑的解释是,体外实验缺乏赋予S-硝化反应特异性的细胞成分。在实验上,该项目将尝试通过使用各种高级工具(例如:量身定制的亲和力探针,电感耦合的等离子体光谱,荧光光谱法)以及最近开发的S-亚硝化特异性生化测定法。一氧化氮(NO)介导了血管松弛,心肌功能的复杂方面,所有主要器官的灌注和功能,大脑中的突触可塑性,血小板聚集,皮肤功能以及许多其他生理过程。鉴于NO在人类生物学中的作用,对其信号传导所涉及的分子细节的完全理解将在理解和治疗广泛的疾病(例如高血压和心血管疾病)中明确应用。这项研究可以导致更有效的疗法的发展,并可能降低医疗保健成本。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemoproteomic Strategy to Quantitatively Monitor Transnitrosation Uncovers Functionally Relevant S-Nitrosation Sites on Cathepsin D and HADH2.
- DOI:10.1016/j.chembiol.2016.05.008
- 发表时间:2016-06-23
- 期刊:
- 影响因子:8.6
- 作者:Zhou Y;Wynia-Smith SL;Couvertier SM;Kalous KS;Marletta MA;Smith BC;Weerapana E
- 通讯作者:Weerapana E
Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation.
诱导型一氧化氮合酶自动 S-亚硝化和失活的机制和动力学。
- DOI:10.1021/bi201818c
- 发表时间:2012
- 期刊:
- 影响因子:2.9
- 作者:Smith,BrianC;Fernhoff,NathanielB;Marletta,MichaelA
- 通讯作者:Marletta,MichaelA
Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling.
- DOI:10.1016/j.cbpa.2012.10.016
- 发表时间:2012-12
- 期刊:
- 影响因子:7.8
- 作者:Smith, Brian C.;Marletta, Michael A.
- 通讯作者:Marletta, Michael A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL A. MARLETTA其他文献
MICHAEL A. MARLETTA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL A. MARLETTA', 18)}}的其他基金
Activation Mechanism of Soluble Guanylate Cyclase
可溶性鸟苷酸环化酶的激活机制
- 批准号:
10078617 - 财政年份:2019
- 资助金额:
$ 27.59万 - 项目类别:
Activation Mechanism of Soluble Guanylate Cyclase
可溶性鸟苷酸环化酶的激活机制
- 批准号:
10317062 - 财政年份:2019
- 资助金额:
$ 27.59万 - 项目类别:
Nitric Oxide Signaling and Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7477191 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
- 批准号:
7583873 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
- 批准号:
7364650 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
Nitric Oxide Signaling and Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7317430 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
Specificity and Control of Signaling by S-Nitrosation
S-亚硝化信号传导的特异性和控制
- 批准号:
7242992 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
Nitric Oxide Signaling And Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7943059 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
Nitric Oxide Signaling And Soluble Guanylate Cyclase
一氧化氮信号传导和可溶性鸟苷酸环化酶
- 批准号:
7728873 - 财政年份:2007
- 资助金额:
$ 27.59万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 27.59万 - 项目类别:
An immunotherapeutic IgY formulation against norovirus diarrhea
一种针对诺如病毒腹泻的免疫治疗 IgY 制剂
- 批准号:
10693530 - 财政年份:2023
- 资助金额:
$ 27.59万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 27.59万 - 项目类别:
Elucidation and improved control of human induced pluripotent stem cell cardiac differentiation by using single-guide RNA-based cellular barcoding to track and manipulate lineages
通过使用基于单向导 RNA 的细胞条形码来跟踪和操纵谱系,阐明并改进对人类诱导多能干细胞心脏分化的控制
- 批准号:
10752369 - 财政年份:2023
- 资助金额:
$ 27.59万 - 项目类别:
Pathogenic mechanisms of myosin binding protein C missense variants within hypertrophic cardiomyopathy
肥厚型心肌病中肌球蛋白结合蛋白C错义变异的致病机制
- 批准号:
10610423 - 财政年份:2022
- 资助金额:
$ 27.59万 - 项目类别: