A Web-Based Automatic Virtual Screening System
基于网络的自动虚拟筛选系统
基本信息
- 批准号:7816919
- 负责人:
- 金额:$ 30.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:BenchmarkingBiologicalBiological ProcessBiologyBlast CellChemicalsCodeCommunitiesCommunity ServicesDatabasesDockingEvaluationExpert SystemsGoalsLaboratoriesLeadLibrariesLigandsLocationMethodsModelingMolecularOnline SystemsPharmaceutical PreparationsProteinsReagentResearch PersonnelScreening procedureSiteSpecialistStructureSystemTechniquesTestingZincabstractingbasecheminformaticsclinically relevantdrug discoveryimprovedinterestnovelprotein functionprotein structurepublic health relevancesuccesstooltool developmentvirtualweb interface
项目摘要
DESCRIPTION (provided by applicant): Abstract Virtual screening is the most practical method to leverage ligand and protein structures for lead discovery. Unfortunately, both ligand-based and docking techniques are inaccessible to most investigators. A key result from the first period, the ZINC database, has lowered the barrier to entry for docking through public access 3D screening libraries. The Similarity Ensemble Approach (SEA), also developed in the first period, has shown early promise for ligand-based target identification. Still, virtual screening remains difficult to use for most investigators. To lower these barriers still further we will develop databases and automated tools for use by the general community, and investigate their usefulness in proof-of-concept studies. The specific aims are: 1. To develop databases that derive from and enable virtual screening. A. We will develop a database of pre-calculated docking hits that can simply be looked up and purchased for about 1,000 protein targets. This will rely on automated tools for docking, hit evaluation, and comparisons among targets (aim 2). We will also improve databases for virtual screening developed in the first period. These include: B. Expanding ZINC, adding more commercially available compounds and improving the structures represented in it. C. Improving the robustness of DUD, a general benchmarking set for virtual screening. D. Expanding the database of high energy intermediates (HEI) developed in the first period for protein function prediction. 2. To create simple web-based tools for ligand-based and protein-based virtual screening. We will develop and refine two web-based tools to enable non-specialists to discover ligands for their targets. A. For structure-based docking, a simple-looking web-interface to docking that guides the user, selects parameters, calibrates the model, and manages the calculation on our cluster. We will develop automated tools to evaluate the reliability of docking results. B. The second virtual screening tool is ligand based, for use when the structure of the target is unknown but many ligands are available, or when one wants to explore alternate targets for a known drug or reagent. We further develop a novel cheminformatic method SEA introduced in the last period to predict target relationships and off-target effects. This approach has had precocious success in identifying interesting polypharmacology, and we will also use it ourselves to predict- and-test off-target, clinically relevant effects of 50 to 100 FDA drugs, and identify the targets of the ~10% of FDA drugs for which a target is unknown.
PUBLIC HEALTH RELEVANCE: Virtual screening is widely used to discover new molecular leads for drug discovery and reagents to understand biological processes. Unfortunately, the technique remains difficult to use, and has thus been restricted to a few expert laboratories, limiting its usefulness. In this proposal, we create databases and tools to bring virtual screening to a wide biological audience, much expanding its impact and usefulness.
摘要虚拟筛选是利用配体和蛋白质结构发现先导分子最实用的方法。不幸的是,大多数研究人员都无法获得基于配体和对接的技术。第一阶段的一个关键成果是锌数据库,它降低了通过公共访问3D放映库对接的进入门槛。相似集成方法(SEA)也是在第一阶段发展起来的,在基于配体的目标识别方面显示出了早期的希望。然而,对于大多数研究者来说,虚拟筛查仍然很难使用。为了进一步降低这些障碍,我们将开发供一般社区使用的数据库和自动化工具,并调查它们在概念验证研究中的有用性。具体目标是:1。开发源自虚拟筛选并启用虚拟筛选的数据库。答:我们将开发一个预先计算的对接点数据库,可以简单地查找和购买大约1000个蛋白质靶点。这将依赖于对接、命中评估和目标间比较的自动化工具(目标2)。我们还将改进第一期开发的虚拟筛选数据库。这些措施包括:B.扩展锌,添加更多的市售化合物和改善其结构。C.提高DUD的稳健性,DUD是虚拟筛选的通用基准集。D.扩展第一期开发的用于蛋白质功能预测的高能中间体(HEI)数据库。2. 为基于配体和基于蛋白质的虚拟筛选创建简单的基于网络的工具。我们将开发和完善两个基于网络的工具,使非专业人员能够为他们的目标发现配体。a .对于基于结构的对接,一个简单的web界面来引导用户对接,选择参数,校准模型,并管理我们集群上的计算。我们将开发自动化工具来评估对接结果的可靠性。B.第二种虚拟筛选工具是基于配体的,用于当靶标结构未知但有许多配体可用时,或者当人们想要探索已知药物或试剂的替代靶标时。我们进一步发展了一种新的化学信息学方法SEA,用于预测靶标关系和脱靶效应。这种方法在识别有趣的多药理学方面已经取得了早期的成功,我们自己也将使用它来预测和测试50到100种FDA药物的脱靶、临床相关效应,并确定约10%的FDA药物的靶标,其靶标未知。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J. Irwin其他文献
Docking for molecules that bind in a symmetric stack to Alzheimer’s disease tau fibrils with SymDOCK
- DOI:
10.1016/j.bpj.2023.11.1855 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Matthew S. Smith;Peter Kunach;Ian S. Knight;Rian Kormos;Joseph G. Pepe;Isabella Glenn;John J. Irwin;William F. DeGrado;Marc I. Diamond;Sarah H. Shahmoradian;Brian K. Shoichet - 通讯作者:
Brian K. Shoichet
The impact of library size and scale of testing on virtual screening
图书馆规模和测试规模对虚拟筛选的影响
- DOI:
10.1038/s41589-024-01797-w - 发表时间:
2025-01-03 - 期刊:
- 影响因子:13.700
- 作者:
Fangyu Liu;Olivier Mailhot;Isabella S. Glenn;Seth F. Vigneron;Violla Bassim;Xinyu Xu;Karla Fonseca-Valencia;Matthew S. Smith;Dmytro S. Radchenko;James S. Fraser;Yurii S. Moroz;John J. Irwin;Brian K. Shoichet - 通讯作者:
Brian K. Shoichet
Modeling the expansion of virtual screening libraries
对虚拟筛选库的扩展进行建模
- DOI:
10.1038/s41589-022-01234-w - 发表时间:
2023-01-16 - 期刊:
- 影响因子:13.700
- 作者:
Jiankun Lyu;John J. Irwin;Brian K. Shoichet - 通讯作者:
Brian K. Shoichet
Virtual library docking for cannabinoid-1 receptor agonists with reduced side effects
具有减少副作用的大麻素 1 受体激动剂的虚拟库对接
- DOI:
10.1038/s41467-025-57136-7 - 发表时间:
2025-03-06 - 期刊:
- 影响因子:15.700
- 作者:
Tia A. Tummino;Christos Iliopoulos-Tsoutsouvas;Joao M. Braz;Evan S. O’Brien;Reed M. Stein;Veronica Craik;Ngan K. Tran;Suthakar Ganapathy;Fangyu Liu;Yuki Shiimura;Fei Tong;Thanh C. Ho;Dmytro S. Radchenko;Yurii S. Moroz;Sian Rodriguez Rosado;Karnika Bhardwaj;Jorge Benitez;Yongfeng Liu;Herthana Kandasamy;Claire Normand;Meriem Semache;Laurent Sabbagh;Isabella Glenn;John J. Irwin;Kaavya Krishna Kumar;Alexandros Makriyannis;Allan I. Basbaum;Brian K. Shoichet - 通讯作者:
Brian K. Shoichet
John J. Irwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J. Irwin', 18)}}的其他基金
Ultra-large library docking for ligand discovery
用于配体发现的超大文库对接
- 批准号:
10240701 - 财政年份:2019
- 资助金额:
$ 30.64万 - 项目类别:
Ultra-large library docking for ligand discovery
用于配体发现的超大文库对接
- 批准号:
10473611 - 财政年份:2019
- 资助金额:
$ 30.64万 - 项目类别:
Ultra-large library docking for ligand discovery
用于配体发现的超大文库对接
- 批准号:
10023266 - 财政年份:2019
- 资助金额:
$ 30.64万 - 项目类别:
Ultra-large library docking for ligand discovery
用于配体发现的超大文库对接
- 批准号:
9797487 - 财政年份:2019
- 资助金额:
$ 30.64万 - 项目类别:
A Web-Based Automatic Virtual Screening System
基于网络的自动虚拟筛选系统
- 批准号:
10297015 - 财政年份:2004
- 资助金额:
$ 30.64万 - 项目类别:
A Web-Based Automatic Virtual Screening System
基于网络的自动虚拟筛选系统
- 批准号:
10612058 - 财政年份:2004
- 资助金额:
$ 30.64万 - 项目类别:
A Web-Based Automatic Virtual Screening System
基于网络的自动虚拟筛选系统
- 批准号:
10434959 - 财政年份:2004
- 资助金额:
$ 30.64万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 30.64万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 30.64万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 30.64万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 30.64万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 30.64万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 30.64万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 30.64万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 30.64万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 30.64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




