Increasing the reliability of clinical microarray data analysis by systematic bia

通过系统偏差提高临床微阵列数据分析的可靠性

基本信息

  • 批准号:
    7569798
  • 负责人:
  • 金额:
    $ 8.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Microarray analysis is widely expected to further our understanding of disease phenotypes and yield robust gene expression signature based predictors of clinical outcome. However, as it has been frequently demonstrated in the literature, insufficient understanding of the various key characteristics of clinical microarray data sets, such as their noise structure, often impedes extracting robust, biologically and clinically meaningful results. In this grant we provide preliminary evidence that clinical microarray data sets contain a significant level of systematic bias. We identified sources of the observed technical bias, such as the overall level of mRNA integrity in a given microarray sample. We showed that this affects the expression level of many genes in concert, thus causing spurious correlations in clinical data sets and false associations between genes and clinical variables. In this proposal we are developing a method that correct for such technical biases in clinical microarray data that are produced on the various generally used microarray platforms. In specific aim 2 we will evaluate the overall impact of systematic bias correction in clinical microarray data sets. We will determine whether clinical microarray measurements show better correlation with independent validation or during cross-validation. As our preliminary results indicate, the proposed bias correction significantly increased concordance of gene expression levels with known biological relationships therefore it will likely facilitate the extraction of clinically relevant results from microarray data.
描述(由申请人提供): 微阵列分析被广泛期望进一步我们对疾病表型的理解,并产生基于基因表达特征的临床结果预测因子。然而,正如文献中经常证明的那样,对临床微阵列数据集的各种关键特征(例如其噪声结构)的理解不足,通常会阻碍提取稳健的、生物学上和临床上有意义的结果。在这项资助中,我们提供了初步证据,表明临床微阵列数据集包含显着水平的系统性偏差。我们确定了观察到的技术偏差的来源,例如给定微阵列样品中mRNA完整性的总体水平。我们发现,这会影响许多基因的表达水平,从而导致临床数据集的虚假相关性以及基因和临床变量之间的虚假关联。在这个建议中,我们正在开发一种方法,纠正临床微阵列数据中的技术偏差,这些数据是在各种常用的微阵列平台上产生的。在具体目标2中,我们将评估临床微阵列数据集系统偏倚校正的总体影响。我们将确定临床微阵列测量是否与独立验证或交叉验证显示更好的相关性。正如我们的初步结果表明,提出的偏差校正显着增加了一致性的基因表达水平与已知的生物学关系,因此,它可能会促进提取临床相关的结果,从微阵列数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoltan Szallasi其他文献

Zoltan Szallasi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoltan Szallasi', 18)}}的其他基金

High Frequency of CHD1 Loss in BRCA2- Deficient African American Prostate Tumors Drives Tumor Formation by Suppressing Replication Stress
BRCA2 缺陷型非裔美国前列腺肿瘤中 CHD1 的高频率缺失通过抑制复制应激来驱动肿瘤形成
  • 批准号:
    10328013
  • 财政年份:
    2010
  • 资助金额:
    $ 8.54万
  • 项目类别:
High Frequency of CHD1 Loss in BRCA2- Deficient African American Prostate Tumors Drives Tumor Formation by Suppressing Replication Stress
BRCA2 缺陷型非裔美国前列腺肿瘤中 CHD1 的高频率缺失通过抑制复制应激来驱动肿瘤形成
  • 批准号:
    10490389
  • 财政年份:
    2010
  • 资助金额:
    $ 8.54万
  • 项目类别:
Increasing the reliability of clinical microarray data analysis by systematic bia
通过系统偏差提高临床微阵列数据分析的可靠性
  • 批准号:
    7877062
  • 财政年份:
    2009
  • 资助金额:
    $ 8.54万
  • 项目类别:
Extracting reliable information from microarray data
从微阵列数据中提取可靠的信息
  • 批准号:
    7088190
  • 财政年份:
    2006
  • 资助金额:
    $ 8.54万
  • 项目类别:
Extracting reliable information from microarray data
从微阵列数据中提取可靠信息
  • 批准号:
    7230160
  • 财政年份:
    2006
  • 资助金额:
    $ 8.54万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了