Software Engineering, Treatment Planning, and QA

软件工程、治疗计划和质量保证

基本信息

项目摘要

The overall goal of Core A is to develop a unique and enhanced software engineering, IMRT planning and quality assurance infrastructure, that addresses the unique data management needs, error pathways, and logistical constraints posed by image guided adaptive radiation therapy (IGART). IGART confronts radiation oncology with new and unfamiliar demands: a high volume of imaging data drawn from many different modalities, new clinical tools such as deformable image registration which must perform reliably in a real- time automated mode, the need for real-time IMRT planning codes that deliver optimal plans with little or no intervention, and integration of complex software tools and functions drawn from the other projects and cores into an integrated structure. These functions include the comprehensive management and manipulation of multiple imaging data sets from diverse imaging modalities, IGART IMRT planning incorporating probabilistic models, maintaining a plan database, and acquiring statistics derived from the quantitative plan evaluation tools such as equivalent uniform dose (EUD), normal tissue complication probability (NTCP), tumor control probability (TCP), and biologically equivalent dose (BED) to accommodate variations in fraction size and to allow summation of brachytherapy and external beam dose distributions. Core A will provide the following functions to meet the overall goals of this PPG of which develops, investigates, optimizes, and implements a system to study the potential clinical advantages of IGART via coupled virtual clinical trials (VCTs) and clinical trials (ACTs). Core Function 1 will develop a novel layered software engineering and data management infrastructure, based upon a shared set of user-program data structures, common tools, and simulation scripting languages, that isolates software developers from the mechanics of storing and retrieving data and converting imaging studies from a variety of native formats to a common format for performing virtual clinical trials (VCTs) conducted by Projects 1-4. Core Function 2 will interface new tools as they are developed in Projects 1-4 into the software infrastructure, which will form the VCD IGART system. Core Function 3 will generate automated IMRT re-optimizations and treatment plans, and data analysis utilizing the VCU IGART system. Core Function 4 will focus on developing a comprehensive set of QA tools and techniques to facilitate the safe and efficient clinical implementation of IGART.
核心A的总体目标是开发一个独特的增强型软件工程,IMRT计划和 质量保证基础设施,解决独特的数据管理需求,错误路径, 图像引导自适应放射治疗(IGART)带来的后勤限制。IGART对抗辐射 肿瘤学与新的和不熟悉的要求:大量的成像数据来自许多不同的 新的临床工具,如变形图像配准,必须在真实的环境中可靠地执行, 时间自动化模式,需要实时IMRT计划代码,提供最佳计划, 干预,以及从其他项目和核心中提取的复杂软件工具和功能的集成 整合成一个整体。这些职能包括全面管理和操纵 来自不同成像模式的多个成像数据集,IGART IMRT计划结合概率 模型,维护计划数据库,以及获取从定量计划评估导出的统计数据 等效均匀剂量(EUD)、正常组织并发症概率(NTCP)、肿瘤控制等工具 概率(TCP)和生物等效剂量(BED),以适应分数大小的变化, 允许近距离放射治疗和外部射束剂量分布的总和。核心A将提供以下内容 职能,以满足本PPG的总体目标,其中开发,调查,优化和实施 通过耦合虚拟临床试验(VCT)研究IGART潜在临床优势的系统, 临床试验(ACT)。核心功能1将开发一个新的分层软件工程和数据 管理基础设施,基于一组共享的用户程序数据结构、通用工具和 模拟脚本语言,将软件开发人员从存储和 检索数据并将成像研究从各种原生格式转换为通用格式, 执行项目1-4进行的虚拟临床试验(VCT)。核心功能2将连接新工具 因为它们在项目1-4中被开发成软件基础设施,这将形成VCD IGART 系统核心功能3将生成自动IMRT重新优化和治疗计划以及数据 使用VCU IGART系统进行分析。核心职能4将侧重于制定一套全面的 QA工具和技术,以促进IGART的安全和有效的临床实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY F WILLIAMSON其他文献

JEFFREY F WILLIAMSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY F WILLIAMSON', 18)}}的其他基金

Quantitative dual-energy CT imaging for radiation therapy treatment planning
用于放射治疗计划的定量双能 CT 成像
  • 批准号:
    8628785
  • 财政年份:
    2011
  • 资助金额:
    $ 51.09万
  • 项目类别:
Quantitative dual-energy CT imaging for radiation therapy treatment planning
用于放射治疗计划的定量双能 CT 成像
  • 批准号:
    8444300
  • 财政年份:
    2011
  • 资助金额:
    $ 51.09万
  • 项目类别:
Quantitative dual-energy CT imaging for radiation therapy treatment planning
用于放射治疗计划的定量双能 CT 成像
  • 批准号:
    8105671
  • 财政年份:
    2011
  • 资助金额:
    $ 51.09万
  • 项目类别:
Image-guided IMRT and Brachytherapy for Pelvic Tumors
图像引导 IMRT 和近距离放射治疗盆腔肿瘤
  • 批准号:
    8256663
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:
Software Engineering, Treatment Planning, and QA
软件工程、治疗计划和质量保证
  • 批准号:
    8256665
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:
Biostatistics, Outcomes Modeling, Clinical Design, and Administration
生物统计学、结果建模、临床设计和管理
  • 批准号:
    8074388
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:
Software Engineering, Treatment Planning, and QA
软件工程、治疗计划和质量保证
  • 批准号:
    8074387
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:
Biostatistics, Outcomes Modeling, Clinical Design, and Administration
生物统计学、结果建模、临床设计和管理
  • 批准号:
    7806516
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:
Biostatistics, Outcomes Modeling, Clinical Design, and Administration
生物统计学、结果建模、临床设计和管理
  • 批准号:
    8256666
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:
Image-guided IMRT and Brachytherapy for Pelvic Tumors
图像引导 IMRT 和近距离放射治疗盆腔肿瘤
  • 批准号:
    8074385
  • 财政年份:
    2007
  • 资助金额:
    $ 51.09万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 51.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了