Deformable Image Registration and Reconstruction
变形图像配准与重建
基本信息
- 批准号:7806511
- 负责人:
- 金额:$ 33.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-16 至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAlgorithmsAnatomic ModelsAnatomyBackBiologicalBiological ProcessBrachytherapyBreathingChestClinicClinicalDataDevelopmentDoseFamilyGoalsImageIndividualIntensity-Modulated RadiotherapyInvestigationLiquid substanceMapsMeasuresMechanicsMethodsModelingModificationMorphologyMotionNoiseNormal tissue morphologyOpticsOrganOutcomePatientsPelvisPositioning AttributeProceduresProcessProtocols documentationRadiation therapyReproducibilityResearch PersonnelResidual stateResolutionResourcesRespirationRetinal ConeSamplingShapesSourceStructureSurfaceSystemTechniquesTestingTimeTreatment ProtocolsUncertaintyValidationWeightbasecone-beam computed tomographydesignelectron densityimage processingimage reconstructionimage registrationimprovednovelprogramsreconstructionsimulationtreatment planningtumorvector
项目摘要
Optimal image guided adaptive radiotherapy requires a 4D representation of the patients anatomy, that
allows the position of tumor and normal tissue voxels to be tracked through the processes of biological
imaging, planning and simulation, delivery of brachytherapy, and administration of each IMRT fraction. The
scientific objective of this project is to investigate novel methods of nonrigid image registration for
constructing and validating such representations of the patient's anatomy as it changes during the treatment
process. The practical goal is to create a suite of image processing resources that will enable the routine
application of image-guided adaptive radiotherapy techniques in the clinic. In specific aim 1, we will
investigate contour-driven deformable registration methods for mapping high-dose brachytherapy (HDR)
dose distributions in the pelvis to IMRT dose distributions, and for registering biological images to external
beam planning images, including development of a novel surface matching algorithm that accounts for
contouring uncertainties. To efficiently map information from planning CT images to onboard CT images,
acquired prior to administering each daily fraction, we will develop fast parametric image deformation
algorithms that do not require manually contoured landmarks. In Specific Aim 2. we will investigate novel
methods for reconstructing CT images from incomplete projection data by matching deformation models to
sequences of planar image projections, thereby integrating image reconstruction and deformable registration
into a single process. This will be used to develop 4D anatomic representations of patient respiration with
improved temporal resolution and to estimate intrafraction anatomic deformation from higher temporal
resolution sequences of 2D images. Finally, in Specific Aim 3, novel methods for estimating the uncertainty
and error of deformable image registration will be developed.
最佳的图像引导自适应放射治疗需要患者解剖结构的4D表示,
允许肿瘤和正常组织体素的位置通过生物学过程被跟踪
成像、计划和模拟、近距离放射治疗的递送以及每个IMRT部分的管理。的
本项目的科学目标是研究非刚性图像配准的新方法,
当患者的解剖结构在治疗期间改变时,
过程实际目标是创建一套图像处理资源,
图像引导自适应放射治疗技术在临床中的应用。具体目标1:
研究用于标测高剂量近距离放射治疗(HDR)轮廓驱动变形配准方法
将骨盆中的剂量分布与IMRT剂量分布进行比较,并将生物图像配准到外部
光束规划图像,包括开发一种新的表面匹配算法,
轮廓不确定性。为了有效地将来自计划CT图像的信息映射到机载CT图像,
在管理每个每日部分之前获取,我们将开发快速参数化图像变形
不需要手动轮廓标志的算法。具体目标2。我们将调查小说
通过匹配变形模型从不完全投影数据重建CT图像的方法,
平面图像投影序列,从而集成图像重建和可变形配准
变成一个单一的过程。这将用于开发患者呼吸的4D解剖表示,
提高时间分辨率,并从更高的时间分辨率估计分次内解剖变形
分辨率序列的2D图像。最后,在具体目标3中,
变形图像的配准误差也会增大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTIN J MURPHY其他文献
MARTIN J MURPHY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTIN J MURPHY', 18)}}的其他基金
Deformable image registration and reconstruction for radiotherapy applications
用于放射治疗应用的可变形图像配准和重建
- 批准号:
7276706 - 财政年份:2006
- 资助金额:
$ 33.1万 - 项目类别:
Deformable image registration and reconstruction for radiotherapy applications
用于放射治疗应用的可变形图像配准和重建
- 批准号:
7901643 - 财政年份:2006
- 资助金额:
$ 33.1万 - 项目类别:
Electromagnetic Tracking of Tumors for Radiotherapy
用于放射治疗的肿瘤电磁跟踪
- 批准号:
7026915 - 财政年份:2006
- 资助金额:
$ 33.1万 - 项目类别:
Deformable image registration and reconstruction for radiotherapy applications
用于放射治疗应用的可变形图像配准和重建
- 批准号:
7665432 - 财政年份:2006
- 资助金额:
$ 33.1万 - 项目类别:
Deformable image registration and reconstruction for radiotherapy applications
用于放射治疗应用的可变形图像配准和重建
- 批准号:
7136580 - 财政年份:2006
- 资助金额:
$ 33.1万 - 项目类别:
Deformable image registration and reconstruction for radiotherapy applications
用于放射治疗应用的可变形图像配准和重建
- 批准号:
7479115 - 财政年份:2006
- 资助金额:
$ 33.1万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.1万 - 项目类别:
Research Grant