Modulation of MSC Differentiation for Fibrocartilage Tissue Engineering

纤维软骨组织工程中 MSC 分化的调节

基本信息

  • 批准号:
    7895815
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-17 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Fibrocartilaginous tissues are found throughout the musculoskeletal system in regions experiencing substantial levels of both tension and compression during functional loading. These tissues have highly organized, heterogeneous structures that are well suited for their mechanical functions. Like articular cartilage, fibrocartilage has a poor intrinsic repair capacity, and damage or degradation often leads to early osteoarthritis or joint dysfunction. Tissue engineering offers the potential to treat damaged or diseased fibrocartilages with biologically and mechanically functional replacements. In order for such an approach to be successful, however, strategies must be developed that ultimately produce an engineered replacement with cell phenotypes and ECM organization capable of surviving and functioning in the complex and demanding mechanical environment of the native tissue. Taking cues from fibrocartilage development, we believe that coordinated manipulation of the biochemical and biomechanical environment can be employed as part of a strategy to guide the formation of fibrocartilage replacements with appropriate cell and matrix constituents. Specifically, we propose that oscillatory compression will act as a chondrogenic stimulus while oscillatory tension will act as a fibrogenic stimulus, and that each is capable of modulating MSC differentiation. Combinations of these mechanical stimuli with specific biochemical factors promoting chondrogenic or fibrogenic differentiation will produce a range of cell phenotypes characteristic of fibroblasts, chondrocytes, and fibrochondrocytes. The following three hypotheses will be tested: 1) Short duration oscillatory compression and tension will differentially modulate cellular activity of differentiating human MSCs. 2) Sustained oscillatory compression and tension will differentially alter human MSC differentiation, construct composition and mechanical properties. 3) Effects of mechanical stimulation on human MSCs will persist without lineage-specific mechanical or biochemical stimulation. Successful completion of this proposal will provide a fundamental understanding of the role for tension and compression in guiding human MSC differentiation, and will allow the development of novel strategies involving spatially varying stimuli to produce engineered fibrocartilage replacements controlled spatial heterogeneity. PUBLIC HEALTH RELEVANCE: These studies will enhance our understanding of how mechanical loading influences the development of tissues such as cartilage and meniscus. This will aid in the development of functional tissue engineered replacements and may aid in understanding why particular approaches to cartilage repair succeed or fail.
描述(申请人提供):纤维软骨组织遍布肌肉骨骼系统,在功能性负荷过程中承受相当程度的拉伸和压缩。这些组织具有高度组织化的异质结构,非常适合它们的机械功能。与关节软骨一样,纤维软骨的固有修复能力较差,损伤或退化往往会导致早期骨关节炎或关节功能障碍。组织工程学为治疗受损或疾病的纤维软骨提供了生物和机械功能替代的可能性。然而,为了使这种方法成功,必须制定策略,最终产生具有细胞表型和ECM组织的工程化替代材料,能够在复杂和苛刻的自然组织机械环境中生存和发挥作用。以纤维软骨发育为线索,我们认为,生物化学和生物力学环境的协调操作可以作为指导具有适当细胞和基质成分的纤维软骨替代物形成的策略的一部分。具体地说,我们认为振荡压缩将作为软骨源性刺激,而振荡张力将作为纤维化刺激,并且两者都能够调节MSC的分化。这些机械刺激与促进成软骨或成纤维分化的特定生化因素相结合,将产生成纤维细胞、软骨细胞和纤维软骨细胞特有的一系列细胞表型。将检验以下三个假说:1)短时间振荡压缩和拉伸将不同程度地调节分化为人MSCs的细胞活性。2)持续的振荡压缩和拉伸将不同程度地改变人MSC的分化、结构组成和力学性能。3)机械刺激对人MSCs的影响在没有谱系特异性机械刺激或生化刺激的情况下将持续存在。该提案的成功完成将使我们对拉伸和压缩在引导人类MSC分化中的作用有一个基本的了解,并将允许开发涉及空间变化刺激的新策略,以生产可控制空间异质性的工程化纤维软骨替代物。 公共卫生相关性:这些研究将加强我们对机械负荷如何影响软骨和半月板等组织发育的理解。这将有助于功能性组织工程化替代物的开发,并可能有助于理解软骨修复的特定方法成功或失败的原因。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fact versus artifact: avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs.
  • DOI:
    10.22203/ecm.v029a17
  • 发表时间:
    2015-04-19
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zheng CH;Levenston ME
  • 通讯作者:
    Levenston ME
Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels.
  • DOI:
    10.1016/j.actbio.2012.06.028
  • 发表时间:
    2012-10
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Ma K;Titan AL;Stafford M;Zheng Ch;Levenston ME
  • 通讯作者:
    Levenston ME
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARC Elliot LEVENSTON其他文献

MARC Elliot LEVENSTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARC Elliot LEVENSTON', 18)}}的其他基金

Rapid Integration of Articular Cartilage Implants Using Photochemical Bonding
利用光化学粘合快速整合关节软骨植入物
  • 批准号:
    8512184
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
Rapid Integration of Articular Cartilage Implants Using Photochemical Bonding
利用光化学粘合快速整合关节软骨植入物
  • 批准号:
    8636401
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
Modulation of MSC Differentiation for Fibrocartilage Tissue Engineering
纤维软骨组织工程中 MSC 分化的调节
  • 批准号:
    7582524
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
Analysis of Cartilage Morphology and sGAG Content via Contrast Enhanced Micro-CT
通过增强显微 CT 分析软骨形态和 sGAG 含量
  • 批准号:
    7088193
  • 财政年份:
    2006
  • 资助金额:
    $ 36万
  • 项目类别:
Spatiotemporal Progression of Meniscal Degradation
半月板退化的时空进展
  • 批准号:
    6963057
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
Spatiotemporal Progression of Meniscal Degradation
半月板退化的时空进展
  • 批准号:
    7503639
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
Spatiotemporal Progression of Meniscal Degradation
半月板退化的时空进展
  • 批准号:
    7761685
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
Spatiotemporal Progression of Meniscal Degradation
半月板退化的时空进展
  • 批准号:
    7107983
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
Spatiotemporal Progression of Meniscal Degradation
半月板退化的时空进展
  • 批准号:
    7594913
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
Spatiotemporal Progression of Meniscal Degradation
半月板退化的时空进展
  • 批准号:
    7500134
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了