MicroRNA pathway in mechanisms of nanoparticles neurotoxicity
纳米颗粒神经毒性机制中的微小RNA途径
基本信息
- 批准号:8035758
- 负责人:
- 金额:$ 40.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-24 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Recent observations have demonstrated that nanomaterials may be toxic to human tissue and cell cultures, resulting in oxidative stress, inflammatory cytokine production and cell death. While the ability of nano-scaled particulate matter is known to cause a range of problems in respiratory system, recent observations suggest that the nervous system may be vulnerable as well. In particular, it was shown that nanoparticles can penetrate the blood-brain barrier affecting brain signaling linked to Alzheimer's and Parkinson's diseases, and decrease in cognitive function. However, the mechanism of nanomaterials toxicity on the nervous system has been poorly investigated. A significant question remaining to be addressed is how nanoparticles trigger changes in the nerve cells, and what can be done to early detect these deffects. Recent evidence suggests that microRNAs (miRNAs), small non-coding RNAs that regulate gene expression, may be an important prognostic factor in neurodegeneration caused by environmental exposures. While dysregulation of miRNAs has been observed in toxicological and neurological conditions, no mechanistic studies have been done on the role of miRNAs in nanotoxicity. One category of nanomaterial includes carbon nanotubes (CNTs), which are allotropes of carbon with a cylindrical nanostructure. These cylindrical structures have novel properties that make them useful in many applications in nanotechnology, electronics, optics, as well as in medicine. Their final usage, however, may be limited by their potential toxicity. In the current application, we hypothesize that exposure to CNTs will cause dysregulation of miRNAs in neuronal cells and will negatively impact neuronal function. Therefore, the specific aims for the two-year period are: 1) Determine impact of "direct" CNTs exposure on neuronal cultures in vitro, and "indirect" impact on peripheral neuron regeneration following respiratory CNTs exposure in vivo. 2) Characterize miRNA expression signature in neuronal cells in response to "direct" and "indirect" CNTs exposures. 3) Investigate if miRNAs depletion will make neuron regeneration more vulnerable to CNTs exposures by deleting Dicer in vitro and in vivo. The experiments in this application address clinically important question of CNTs neurotoxicity. The proposed research will be essential to establish a foundation for developing miRNA- based methods for diagnosis, prognosis and treatment of CNTs-associated health risks. The long-term objectives of this investigation are to elucidate role of miRNAs in mechanisms underlying the neurotoxicity of CNTs, to provide research opportunities for undergraduate and graduate students, and to provide data on which to establish future R01 grant applications.
PUBLIC HEALTH RELEVANCE: The experiments in this application address clinically important question of epigenetic mechanisms of nanoparticle neurotoxicity. The proposed research will advance our understanding of the role of the microRNA pathway in mediating effects of nanoparticles on the nervous system, and will help to establish a foundation for developing methods for diagnosis, prognosis and treatment of nanoparticle associated health problems.
描述(由申请人提供): 最近的观察表明,纳米材料可能对人体组织和细胞培养物有毒,导致氧化应激、炎性细胞因子产生和细胞死亡。虽然已知纳米级颗粒物的能力会导致呼吸系统的一系列问题,但最近的观察表明,神经系统也可能很脆弱。特别是,研究表明纳米颗粒可以穿透血脑屏障,影响与阿尔茨海默病和帕金森病相关的脑信号传导,并降低认知功能。然而,纳米材料对神经系统的毒性机制研究得很差。一个有待解决的重要问题是纳米颗粒如何触发神经细胞的变化,以及如何早期检测这些缺陷。最近的证据表明,microRNAs(miRNAs),调节基因表达的小的非编码RNA,可能是环境暴露引起的神经退行性变的重要预后因素。虽然已经在毒理学和神经学条件下观察到miRNA的失调,但尚未对miRNA在纳米毒性中的作用进行机制研究。一类纳米材料包括碳纳米管(CNT),其是具有圆柱形纳米结构的碳的同素异形体。这些圆柱形结构具有新颖的特性,使它们在纳米技术、电子学、光学以及医学的许多应用中非常有用。然而,它们的最终用途可能受到其潜在毒性的限制。在本申请中,我们假设暴露于CNT将导致神经元细胞中miRNA的失调,并将对神经元功能产生负面影响。因此,两年期的具体目标是:1)确定"直接"碳纳米管暴露对体外神经元培养物的影响,以及"间接"碳纳米管暴露对体内呼吸系统神经元再生的影响。 2)表征神经元细胞中响应于"直接"和"间接" CNT暴露的miRNA表达特征。 3)通过在体外和体内删除Dicer,研究miRNAs缺失是否会使神经元再生更容易受到CNT暴露的影响。 本申请中的实验解决了CNT神经毒性的临床重要问题。拟议的研究将是必不可少的,以建立一个基础,开发基于miRNA的方法,用于诊断,预后和治疗CNT相关的健康风险。这项研究的长期目标是阐明miRNA在CNT神经毒性机制中的作用,为本科生和研究生提供研究机会,并为建立未来的R01资助申请提供数据。
公共卫生相关性:本申请中的实验解决了纳米颗粒神经毒性的表观遗传机制的临床重要问题。这项研究将促进我们对microRNA途径在介导纳米颗粒对神经系统影响中的作用的理解,并将有助于为开发诊断,预后和治疗纳米颗粒相关健康问题的方法奠定基础。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern.
- DOI:10.1016/j.neuroscience.2011.06.017
- 发表时间:2011-09-08
- 期刊:
- 影响因子:3.3
- 作者:Wu, D.;Raafat, M.;Pak, E.;Hammond, S.;Murashov, A. K.
- 通讯作者:Murashov, A. K.
miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer's Disease by Silencing Kremen1.
- DOI:10.3389/fncel.2018.00087
- 发表时间:2018
- 期刊:
- 影响因子:5.3
- 作者:Ross SP;Baker KE;Fisher A;Hoff L;Pak ES;Murashov AK
- 通讯作者:Murashov AK
Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro.
- DOI:10.1016/j.expneurol.2011.11.041
- 发表时间:2012-01
- 期刊:
- 影响因子:5.3
- 作者:Wu, Di;Raafat, Abdalla;Pak, Elena;Clemens, Stefan;Murashov, Alexander K.
- 通讯作者:Murashov, Alexander K.
Multi-walled carbon nanotubes inhibit regenerative axon growth of dorsal root ganglia neurons of mice.
- DOI:10.1016/j.neulet.2011.11.056
- 发表时间:2012-01-17
- 期刊:
- 影响因子:2.5
- 作者:Wu D;Pak ES;Wingard CJ;Murashov AK
- 通讯作者:Murashov AK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander K. Murashov其他文献
Alexander K. Murashov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander K. Murashov', 18)}}的其他基金
Role of miRNAs in the transmission of metabolic risks
miRNA 在代谢风险传递中的作用
- 批准号:
10446558 - 财政年份:2022
- 资助金额:
$ 40.43万 - 项目类别:
Role of miRNAs in the transmission of metabolic risks
miRNA 在代谢风险传递中的作用
- 批准号:
10886209 - 财政年份:2022
- 资助金额:
$ 40.43万 - 项目类别:
Role of miRNAs in the transmission of metabolic risks
miRNA 在代谢风险传递中的作用
- 批准号:
10592366 - 财政年份:2022
- 资助金额:
$ 40.43万 - 项目类别:
相似国自然基金
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
肠道菌群介导的脱氧胆酸激活S1PR2/NLRP3/IL-1β通路在炎症性肠病合并艰难梭菌感染中的致病机制研究
- 批准号:82372306
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
cGAS-STING通路调控单核细胞活化参与Graves病发病的机制研究
- 批准号:82370787
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于压力敏感肾单位微流控芯片的肾上皮细胞CAT1-mTOR通路在梗阻性肾损伤中的作用机制研究
- 批准号:82370678
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
- 批准号:82370902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Novel mechanisms of microRNA-mediated anabolic effects in age-related osteoarthritis
microRNA介导的年龄相关骨关节炎合成代谢作用的新机制
- 批准号:
10663670 - 财政年份:2023
- 资助金额:
$ 40.43万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 40.43万 - 项目类别:
microRNA-Mediated Mechanisms Essential for the Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA介导的果蝇谷氨酸突触结构可塑性所必需的机制
- 批准号:
10701428 - 财政年份:2022
- 资助金额:
$ 40.43万 - 项目类别:
Harnessing artificial microRNA clusters against glioblastoma epigenetic plasticity and resistance to therapy
利用人工 microRNA 簇对抗胶质母细胞瘤表观遗传可塑性和治疗耐药性
- 批准号:
10116510 - 财政年份:2020
- 资助金额:
$ 40.43万 - 项目类别:
Harnessing Artificial MicroRNA Clusters Against Glioblastoma Epigenetic Plasticity and Resistance to Therapy
利用人工 MicroRNA 簇对抗胶质母细胞瘤表观遗传可塑性和治疗耐药性
- 批准号:
10543193 - 财政年份:2020
- 资助金额:
$ 40.43万 - 项目类别:
Harnessing artificial microRNA clusters against glioblastoma epigenetic plasticity and resistance to therapy
利用人工 microRNA 簇对抗胶质母细胞瘤表观遗传可塑性和治疗耐药性
- 批准号:
10376238 - 财政年份:2020
- 资助金额:
$ 40.43万 - 项目类别:
microRNA Regulation of Gamma-herpesvirus Latency and Reactivation
microRNA 对 γ-疱疹病毒潜伏期和再激活的调节
- 批准号:
10532215 - 财政年份:2019
- 资助金额:
$ 40.43万 - 项目类别:
microRNA Regulation of Gamma-herpesvirus Latency and Reactivation
microRNA 对 γ-疱疹病毒潜伏期和再激活的调节
- 批准号:
10084264 - 财政年份:2019
- 资助金额:
$ 40.43万 - 项目类别:
microRNA Regulation of Gamma-herpesvirus Latency and Reactivation
microRNA 对 γ-疱疹病毒潜伏期和再激活的调节
- 批准号:
10319587 - 财政年份:2019
- 资助金额:
$ 40.43万 - 项目类别:
Elucidating mechanisms of microRNA pathway deregulation in human cells
阐明人类细胞中 microRNA 通路失调的机制
- 批准号:
10392141 - 财政年份:2018
- 资助金额:
$ 40.43万 - 项目类别:














{{item.name}}会员




