AR COBRE: PROTEIN TARGETING
AR COBRE:蛋白质靶向
基本信息
- 批准号:7959348
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2010-02-27
- 项目状态:已结题
- 来源:
- 关键词:BacteriaBiochemicalBiological AssayCarrier ProteinsCell membraneCenters of Research ExcellenceChloroplastsColon CarcinomaComplexComputer Retrieval of Information on Scientific Projects DatabaseDiabetes MellitusEndoplasmic ReticulumEnsureEnvironmentFundingGrantHumanIdiopathic Inflammatory MyopathiesInstitutionLifeMembraneMentorshipModelingMolecularMolecular MachinesOperative Surgical ProceduresOrganismProteinsProteomicsResearchResearch PersonnelResourcesSignal Recognition ParticleSourceSystemThylakoid MembranesUnited States National Institutes of HealthWorkbasecomparativecontrolled releaseinsightpathogenprotein protein interactionprotein structureprotein structure functionreceptorreceptor functionreconstitutionsignal recognition particle receptorsuccesstooltranslocase
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Signal recognition particles (SRPs) and their receptors function in every domain of life. They are components of an elaborate protein targeting system that delivers newly synthesized proteins to transporters (protein translocases) present in three different membrane systems; the bacterial cytoplasmic membrane, the endoplasmic reticulum, and the chloroplast thylakoid membrane. Malfunction of the SRP targeting/translocation system in humans is implicated in idiopathic inflammatory myopathies, diabetes mellitus, and colon cancer. In bacteria, SRP function is central to the success of bacterial pathogens. Complexities of SRP targeting continue to slow a detailed mechanistic model for how SRP targets and transfers proteins to translocation machinery located in the target membrane. Unique structural and functional features of the more recently discovered chloroplast SRP provide an unprecedented opportunity to examine the SRP targeting mechanism using tools and assays not available or not easily applied to other SRP-based targeting models. A transdisciplinary team led by Goforth and under the mentorship of Henry will apply advanced proteomics and protein structure analysis with more traditional molecular and biochemical approaches in order to (1) identify protein interactions between components of a SRP/receptor/translocase complex, (2) determine the structure of proteins critical for SRP to communicate with receptor and translocase, and (3) determine the function of specific protein/protein interactions in assays that reconstitute each step of the targeting/translocation mechanism. Completion of the proposed work will provide understanding of interactions that (i) are needed for targeting components to engage appropriate and available translocation machinery, (ii) regulate substrate release from SRP to the translocase, and (iii) control release of targeting components from the translocase. Our resulsts will broadly impact our understanding of the molecular machines that function in protein targeting and insertion. Moreover, insight gained through this transdisciplinary approach will provide needed comparative information to identify common mechanistic principals of SRP-based targeting. It is these common features that undoubtedly ensure faithful protein targeting and insertion despite evolutionary forces that have altered the SRP targeting/insertion machinery for efficient operation in a diverse array of organisms and cellular environments.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
信号识别颗粒(SRPs)及其受体在生命的各个领域发挥作用。它们是一个精心设计的蛋白质靶向系统的组成部分,该系统将新合成的蛋白质递送到存在于三种不同膜系统中的转运蛋白(蛋白质转位酶);细菌细胞质膜,内质网和叶绿体类囊体膜。 人类中SRP靶向/易位系统的功能障碍与特发性炎性肌病、糖尿病和结肠癌有关。 在细菌中,SRP功能对于细菌病原体的成功至关重要。 SRP靶向的复杂性继续减慢SRP如何靶向和转移蛋白质到位于靶膜中的易位机器的详细机制模型。 最近发现的叶绿体SRP的独特结构和功能特征提供了一个前所未有的机会,检查SRP的靶向机制,使用工具和测定不可用或不容易应用到其他SRP为基础的靶向模型。 由Goforth领导的跨学科团队在亨利的指导下将采用先进的蛋白质组学和蛋白质结构分析与更传统的分子和生物化学方法,以(1)确定SRP/受体/转位酶复合物组分之间的蛋白质相互作用,(2)确定SRP与受体和转位酶通讯的关键蛋白质结构,和(3)在重建靶向/易位机制的每个步骤的测定中确定特异性蛋白质/蛋白质相互作用的功能。 完成拟议的工作将提供相互作用的理解,(i)需要为目标组件从事适当的和可用的易位机制,(ii)调节底物释放从SRP的易位酶,和(iii)控制释放的目标组件从易位酶。 我们的研究结果将广泛影响我们对蛋白质靶向和插入功能的分子机器的理解。 此外,通过这种跨学科方法获得的见解将提供所需的比较信息,以确定基于SRP的目标选择的共同机制原则。 正是这些共同特征无疑确保了忠实的蛋白质靶向和插入,尽管进化力量已经改变了SRP靶向/插入机制,以在多种生物体和细胞环境中有效操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBYN GOFORTH其他文献
ROBYN GOFORTH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBYN GOFORTH', 18)}}的其他基金
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 30.78万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Standard Grant














{{item.name}}会员




