Theorectal and Experimental Investigations of Microcirculatory Signaling
微循环信号传导的理论和实验研究
基本信息
- 批准号:7878649
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAngiotensinsAnimal ModelAnimalsAreaArginineAtherosclerosisBlood PressureBlood VesselsCause of DeathChronicComplexComputer SimulationDataDevelopmentDiseaseEquilibriumEventFeedbackFunctional disorderGoalsHealthHeart DiseasesHomeostasisHypertensionIn VitroInterventionInvestigationKidneyKidney FailureKnowledgeLaboratoriesLeadLifeLinkMicrocirculationModelingMolecular ProfilingNitric OxideOuabainOutcomeOxidative StressPeripheralPharmacy (field)PhenotypePhysiologicalPhysiologyPlayPopulationPositioning AttributePredispositionPublic HealthPublicationsPumpRattusRegulationRelaxationRenal functionRenin-Angiotensin SystemResearchResearch ProposalsResistanceRoleSecond Messenger SystemsSeriesSignal PathwaySignal TransductionSignal Transduction PathwaySodium ChlorideSodium-Calcium ExchangerSolidStrokeSystemTestingTheoretical StudiesTheoretical modelTherapeuticTissuesTranslatingVascular resistanceWorkbasebiological systemscardiovascular disorder riskcardiovascular risk factorclinical practiceeffective therapyexperiencefunctional restorationimprovedin vitro Modelinhibitor/antagonistinnovationinsightinterestmathematical modelmodel developmentnormotensivenovel strategiesnovel therapeuticsprotein expressionresearch studyresponsesalt intakesalt sensitivesecond messengerskills
项目摘要
DESCRIPTION (provided by applicant): Blood pressure sensitivity to salt intake appears in both hypertensives and normotensives and represents a major health problem as it is associated with increased cardiovascular risk. Prior investigations have suggested a central role for the L-arginine-nitric oxide (NO) system in salt sensitivity. Despite significant prior contributions, fundamental questions about the role of NO in the regulation of vascular tone remain unanswered and this impedes current efforts to optimize available interventions and/or develop new therapeutic strategies. Therefore, this research proposal aims to fill an important gap in the understanding of the mechanisms that regulate vascular resistance and to translate this knowledge into clinically testable hypotheses for improved therapeutic practice in hypertension. The central hypothesis of this study is that regulation of vascular resistance emerges from the nonlinear interaction of Ca2+ and NO-dependent signaling pathways. Altered NO/Ca2+ dynamics contribute to a different phenotype in the microcirculation of salt-sensitive hypertensives. In this study we follow an innovative synergistic approach of theoretical modeling and in vitro experimentation to elucidate signaling mechanisms in the microcirculation. Mathematical models integrate biophysically detailed mechanisms at the cellular level to describe physiological function at a macroscale tissue level. The overall goal is to provide a theoretical framework that will guide the development of novel therapeutic strategies in salt sensitivity. In vitro experimental studies assist in model development and test model generated hypotheses. Microcirculatory phenotype and vascular reactivity are assessed in an animal model of salt sensitive hypertension. Synergistic strategies of NO stimulation combined with inhibition of the angiotensin system or effectors of Ca2+ homeostasis are evaluated for their ability to restore normal vascular function.
Relevance: Salt intake affects blood pressure levels in a large percentage of the population. This condition, referred to as salt sensitivity, represents a major public health problem as it is associated with an increased risk for cardiovascular disease. In this study we utilize a novel approach of combining computational modeling and experimentation to investigate the mechanisms that link salt intake and blood pressure. Preliminary results suggest that combination of available pharmaceutics can have beneficial effects in restoring function in the microcirculation and will be tested in hypertensive animals.
描述(由申请人提供):高血压患者和血压正常者均出现血压对盐摄入的敏感性,并且由于其与心血管风险增加相关,因此代表了一个主要的健康问题。先前的研究表明,L-精氨酸-一氧化氮(NO)系统在盐敏感性中起着核心作用。尽管有显著的先前贡献,关于NO在调节血管张力中的作用的基本问题仍然没有答案,这阻碍了目前优化可用干预和/或开发新的治疗策略的努力。因此,这项研究的目的是填补一个重要的空白,在了解调节血管阻力的机制,并将这些知识转化为临床可检验的假说,以改善高血压的治疗实践。本研究的中心假设是,血管阻力的调节出现从Ca 2+和NO依赖的信号通路的非线性相互作用。改变NO/Ca 2+动力学有助于盐敏感性高血压患者微循环中的不同表型。在这项研究中,我们遵循一种创新的理论建模和体外实验的协同方法,以阐明微循环中的信号机制。数学模型在细胞水平上整合了生物病理学上详细的机制,以在宏观组织水平上描述生理功能。总体目标是提供一个理论框架,指导盐敏感性新的治疗策略的发展。体外实验研究有助于模型开发和测试模型产生的假设。在盐敏感性高血压动物模型中评估微循环表型和血管反应性。评估NO刺激与抑制血管紧张素系统或Ca 2+稳态效应物组合的协同策略恢复正常血管功能的能力。
相关性:盐的摄入量会影响大部分人群的血压水平。这种情况,称为作为盐敏感性,代表了一个主要的公共卫生问题,因为它与心血管疾病的风险增加有关。在这项研究中,我们利用一种新的方法相结合的计算建模和实验来研究的机制,联系盐的摄入量和血压。初步结果表明,现有的药物组合可以在恢复微循环功能方面具有有益的效果,并将在高血压动物中进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaos Michael Tsoukias其他文献
Nikolaos Michael Tsoukias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolaos Michael Tsoukias', 18)}}的其他基金
Cerebral Microvascular Signaling and Neurovascular Coupling: An Integrated Approach to Investigate VCID
脑微血管信号传导和神经血管耦合:研究 VCID 的综合方法
- 批准号:
10663254 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Cerebral Microvascular Signaling and Neurovascular Coupling: An Integrated Approach to Investigate VCID
脑微血管信号传导和神经血管耦合:研究 VCID 的综合方法
- 批准号:
10459515 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Cerebral Microvascular Signaling and Neurovascular Coupling: An Integrated Approach to Investigate VCID
脑微血管信号传导和神经血管耦合:研究 VCID 的综合方法
- 批准号:
10299245 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Integrative modeling to link vascular phenotype to gene expression
将血管表型与基因表达联系起来的综合建模
- 批准号:
8772906 - 财政年份:2014
- 资助金额:
$ 28万 - 项目类别:
Theorectal and Experimental Investigations of Microcirculatory Signaling
微循环信号传导的理论和实验研究
- 批准号:
7430728 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Theorectal and Experimental Investigations of Microcirculatory Signaling
微循环信号传导的理论和实验研究
- 批准号:
8298062 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Theorectal and Experimental Investigations of Microcirculatory Signaling
微循环信号传导的理论和实验研究
- 批准号:
7640676 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Theorectal and Experimental Investigations of Microcirculatory Signaling
微循环信号传导的理论和实验研究
- 批准号:
8085716 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
相似海外基金
PROXIMAL TUBULE ANGIOTENSINS--HEMOLYTIC UREMIC SYNDROME
近端小管血管紧张素--溶血性尿毒症综合征
- 批准号:
6619530 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
PROXIMAL TUBULE ANGIOTENSINS--HEMOLYTIC UREMIC SYNDROME
近端小管血管紧张素--溶血性尿毒症综合征
- 批准号:
6787268 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
PROXIMAL TUBULE ANGIOTENSINS--HEMOLYTIC UREMIC SYNDROME
近端小管血管紧张素--溶血性尿毒症综合征
- 批准号:
6841512 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
PROXIMAL TUBULE ANGIOTENSINS--HEMOLYTIC UREMIC SYNDROME
近端小管血管紧张素--溶血性尿毒症综合征
- 批准号:
6381955 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
PROXIMAL TUBULE ANGIOTENSINS--HEMOLYTIC UREMIC SYNDROME
近端小管血管紧张素--溶血性尿毒症综合征
- 批准号:
6288357 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别:
PROXIMAL TUBULE ANGIOTENSINS--HEMOLYTIC UREMIC SYNDROME
近端小管血管紧张素--溶血性尿毒症综合征
- 批准号:
6524351 - 财政年份:2000
- 资助金额:
$ 28万 - 项目类别: