Acid-sensing channels as novel target for brain ischemia
酸感应通道作为脑缺血的新靶点
基本信息
- 批准号:7812567
- 负责人:
- 金额:$ 39.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:ASIC channelAcidosisAcidsAdverse effectsAggressive behaviorAmilorideAnimal ModelAnimal TestingAnimalsBehaviorBrainBrain IschemiaBrain regionCell Culture TechniquesCellsCerebellumChemosensitizationClinicalClinical TrialsClinical Trials DesignCollaborationsComorbidityDataDevelopmentDoseDrug Administration RoutesEquationEquilibriumExcitatory Amino Acid AntagonistsExperimental ModelsFailureFree Radical ScavengersFunctional disorderFutureGenesGlucoseGlutamate ReceptorGlutamatesGoalsHealth PlanningHippocampus (Brain)HumanHyperactive behaviorImaging TechniquesIn VitroInfarctionInhibitory Concentration 50Injection of therapeutic agentInjuryInternationalInterventionIntracranial HemorrhagesIntramuscularIntravenousIonsIschemiaIschemic Brain InjuryIschemic Neuronal InjuryIschemic StrokeMediatingMembraneMembrane PotentialsModelingMorbidity - disease rateMusNeurogliaNeuronal InjuryNeuronsNeuroprotective AgentsOligodendrogliaOregonOxygenPathway interactionsPatientsPatternPeptidesPerfusionPeritonealPermeabilityPharmaceutical PreparationsPlayPreclinical Drug EvaluationPrimatesPropertyProteinsProtocols documentationPublic HealthReceptor ActivationRegulationRodentRodent ModelRoleRouteSafetySaintsSmall Interfering RNASolutionsStrokeSurfaceSystemTestingTherapeuticTherapeutic InterventionTimeToxic effectToxinTranslatingVariantVenomsWidowabstractinganalogbasebenzamilcell injuryclinically relevantdeprivationdesensitizationdisabilityeffective therapyextracellularhuman subjectin vivoinhibitor/antagonistion channel blockerknock-downknockout genemortalitymouse modelneuroprotectionnew therapeutic targetnovelpatch clamppre-clinicalpreclinical studypreventresponsesmall moleculestroke therapysuccessvoltagewhite matter injury
项目摘要
Abstract/Project Summary
Ischemic stroke is a leading course of mortality and morbidity, and the most
common reason for long-term disabilities. Unfortunately there is still no effective
treatment for stroke patients other than the use of thrombolitics which have limited time
windom and potential side effect of intracranial hemorrhage. It has been well-recognized
for several decades that that intracellular Ca2+ accumulation, particularly through
glutamate receptor activation, and the resultant Ca2+ toxicity, play an important role in
ischemic brain injury. However, the recent clinical trials using glutamate antagonists and
most recently free radical scavengers, have failed to show protection against ischemic
injury. Although multiple factors may have contributed together to the failure of the
trials, it is likely that glutamate-independent Ca2+ loading pathway(s) equally contribute
to the Ca2+ toxicity in ischemia. Indeed, our recent studies in neuronal cell culture and in
whole animal models of ischemia have demonstrated that activation of acid-sensing ion
channels (ASICs), and subsequent Ca2+ entry are largely responsible for acidosis-
mediated, glutamate receptor-independent ischemic brain injury. In cultured mouse
cortical neurons, lowering pH activates amiloride-sensitive ASIC currents. In the
majority of these neurons, ASICs are permeable to Ca2+, and activation of these channels
induces increased concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs by
brief incubation of neurons with acidic solutions induces time-dependent cell injury in the
presence of blockers for voltage-gated Ca2+ channels and the glutamate receptors. This
acid-induced, glutamate-independent neuronal injury is, however, inhibited by blocking
the ASICs, by reducing the extracellular [Ca2+], or by ASIC1 gene knockout. In in vivo
mouse model of ischemia, ASIC1 blockade or ASIC1 gene knockout dramatically
reduced infarct volume. These findings strongly suggest that ASICs may represent novel
therapeutic targets for human stroke. Our objective is to extend our exciting findings in
animal cells to human brain neurons to explore the role of ASICs in acidosis-mediated
ischemic injury of human brain neurons. Our central hypothesis is that human brain
neurons express ASICs. Activation of ASICs induces intracellular Ca2+ accumulation,
which is involved in acidosis-mediated, glutamate-independent neuronal injury. Success
of these studies is an important step for establishing ASICs as novel targets for human
stroke therapy.
摘要/项目摘要
缺血性中风是死亡率和发病率的主要病程,而且最常见的
长期残疾的常见原因。不幸的是,仍然没有有效的
对中风患者的治疗,除非使用时间有限的溶栓药物
温多姆和潜在的颅内出血副作用。它已经被公认为
几十年来,细胞内的钙离子积累,特别是通过
谷氨酸受体的激活,以及由此产生的钙毒性,在
缺血性脑损伤。然而,最近使用谷氨酸拮抗剂和
最近的自由基清除剂,未能显示出对缺血的保护作用
受伤。尽管多种因素可能共同导致了
试验表明,谷氨酸非依赖性钙负荷途径(S)可能起到同样的作用
缺血时钙离子毒性的影响。事实上,我们最近在神经细胞培养和
全动物缺血模型已经证明,酸敏感离子的激活
通道(ASIC)和随后的钙离子进入是酸中毒的主要原因。
介导的谷氨酸受体非依赖性缺血性脑损伤。在培养的小鼠中
皮层神经元,降低pH激活阿米洛利敏感的ASIC电流。在
大多数神经元、ASIC对钙离子具有通透性,并激活这些通道
诱导细胞内钙离子浓度([钙]i)升高。通过以下方式激活ASIC
神经细胞与酸性溶液的短暂孵育诱导时间依赖性细胞损伤
电压门控钙通道和谷氨酸受体阻滞剂的存在。这
然而,酸诱导的谷氨酸非依赖性神经元损伤可通过阻断来抑制
ASICs,通过降低细胞外[Ca~(2+)],或通过ASIC1基因敲除。在体内
小鼠脑缺血模型、ASIC1阻断或ASIC1基因敲除
缩小脑梗塞体积。这些发现有力地表明,ASIC可能代表着新的
人类中风的治疗靶点。我们的目标是将我们令人兴奋的发现扩展到
动物细胞向人脑神经元转化探讨ASICs在酸中毒中的作用
人脑组织神经元的缺血性损伤。我们的中心假设是人脑
神经元表达ASIC。ASICs的激活诱导细胞内钙离子积聚,
它与酸中毒介导的谷氨酸非依赖性神经元损伤有关。成功
这些研究是将ASIC作为人类新靶点的重要一步
中风疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZHIGANG XIONG其他文献
ZHIGANG XIONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZHIGANG XIONG', 18)}}的其他基金
ASICs and increased ischemic brain injury in diabetic condition
ASIC 与糖尿病患者缺血性脑损伤的增加
- 批准号:
8705627 - 财政年份:2011
- 资助金额:
$ 39.43万 - 项目类别:
ASICs and increased ischemic brain injury in diabetic condition
ASIC 与糖尿病患者缺血性脑损伤的增加
- 批准号:
7988154 - 财政年份:2011
- 资助金额:
$ 39.43万 - 项目类别:
ASICs and increased ischemic brain injury in diabetic condition
ASIC 与糖尿病患者缺血性脑损伤的增加
- 批准号:
8458973 - 财政年份:2011
- 资助金额:
$ 39.43万 - 项目类别:
ASICs and increased ischemic brain injury in diabetic condition
ASIC 与糖尿病患者缺血性脑损伤的增加
- 批准号:
8831739 - 财政年份:2011
- 资助金额:
$ 39.43万 - 项目类别:
ASICs and increased ischemic brain injury in diabetic condition
ASIC 与糖尿病患者缺血性脑损伤的增加
- 批准号:
8653994 - 财政年份:2011
- 资助金额:
$ 39.43万 - 项目类别:
ASICs and increased ischemic brain injury in diabetic condition
ASIC 与糖尿病患者缺血性脑损伤的增加
- 批准号:
8274760 - 财政年份:2011
- 资助金额:
$ 39.43万 - 项目类别:
A novel cation channel in excitatory neuronal injury
兴奋性神经元损伤中的新型阳离子通道
- 批准号:
6921028 - 财政年份:2005
- 资助金额:
$ 39.43万 - 项目类别:
A novel cation channel in excitatory neuronal injury
兴奋性神经元损伤中的新型阳离子通道
- 批准号:
7210598 - 财政年份:2005
- 资助金额:
$ 39.43万 - 项目类别:
A novel cation channel in excitatory neuronal injury
兴奋性神经元损伤中的新型阳离子通道
- 批准号:
7029623 - 财政年份:2005
- 资助金额:
$ 39.43万 - 项目类别:
A novel cation channel in excitatory neuronal injury
兴奋性神经元损伤中的新型阳离子通道
- 批准号:
7379919 - 财政年份:2005
- 资助金额:
$ 39.43万 - 项目类别:
相似国自然基金
肿瘤微环境因子Lactic acidosis在肿瘤细胞耐受葡萄糖剥夺中的作用机制研究
- 批准号:81301707
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of factor to induce lactic acidosis in pre-metastatic niche
转移前微环境中诱导乳酸性酸中毒的因素的鉴定
- 批准号:
23K06620 - 财政年份:2023
- 资助金额:
$ 39.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 39.43万 - 项目类别:
Investigation based on both basic and clinical study about acidosis caused by piganide, SGLT2 inhibitor and surgical stress
皮甘尼、SGLT2抑制剂和手术应激引起的酸中毒的基础和临床研究
- 批准号:
23K08372 - 财政年份:2023
- 资助金额:
$ 39.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of proton-sensing G-protein-coupled receptors in the regulation of microglia and microvessel endothelial cell function in brain acidosis in a mouse ischemia reperfusion model.
质子感应 G 蛋白偶联受体在小鼠缺血再灌注模型脑酸中毒中调节小胶质细胞和微血管内皮细胞功能的作用。
- 批准号:
22K07342 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Fingerprinting of Tumor Vascular Perfusion and Acidosis
肿瘤血管灌注和酸中毒的磁共振指纹图谱
- 批准号:
10593285 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10341493 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10558528 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Characterization of an abundant lactate-utilizing Campylobacter involved in mitigating rumen acidosis
参与减轻瘤胃酸中毒的丰富乳酸利用弯曲杆菌的表征
- 批准号:
557929-2021 - 财政年份:2022
- 资助金额:
$ 39.43万 - 项目类别:
Postgraduate Scholarships - Doctoral
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10278747 - 财政年份:2021
- 资助金额:
$ 39.43万 - 项目类别:
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10671682 - 财政年份:2021
- 资助金额:
$ 39.43万 - 项目类别:














{{item.name}}会员




